

Welcome

Presented By:

ARIZONA LIVER HEALTH[™]

Meeting App

Scan to Download the App

Network Name:

Liver Conference Password: DLC24

Morning / Breakfast

7:00 – 7:15 AM Exhibits 7:15 – 8:00 AM Product Theater / Breakfast Available 8:00 – 8:30 AM Exhibits DESERT LIVER CONFERENCE

PRODUCTTHEATER

Date: Saturday, March 2nd
 Time: 7:15 AM - 8:00 AM - Breakfast Available
 Location: Arizona Biltmore Ballroom

REGISTER TODAY

NASH EXPLORED

Emerging Concepts in Nonalcoholic Steatohepatitis

© 2024 Madrigal Pharmaceuticals. All rights reserved. US-00008 01/24

- This activity is not eligible for Continuing Medical Education credit.
- The program materials are developed by Madrigal Pharmaceuticals, Inc.
- The consultant is a paid speaker for Madrigal Pharmaceuticals. Speakers present on behalf of the company and are required to present information in compliance with FDA requirements and other applicable laws, as applicable to Madrigal Pharmaceuticals, Inc.
- Dr. Naim Alkhouri Research funding: 89Bio, Akero, AbbVie/Allergan, Better Therapeutics, Boehringer Ingelheim, Bristol-Myers Squibb, Corcept, Galectin, Genentech, Genfit, Gilead, Hepagene, Healio, Intercept, Inventiva, Ionis, Madrigal Pharmaceuticals, Merck, NGM, Noom, NorthSea, Novo Nordisk, Pfizer, Poxel, Viking, and Zydus. Speaker bureau: AbbVie, Alexion, Echosens, Eisai, Exelixis, Gilead, Intercept, Perspectum, Salix, and Theratechnologies. Consultant: 89Bio, Enyo, Gilead, Intercept, Madrigal Pharmaceuticals, NGM, NorthSea, Novo Nordisk, Pfizer, and Zydus.

- Definitions, Epidemiology, & Comorbidities
- Pathophysiology
- Morbidity & Mortality
- Patient Identification & Perspective
- NASH Management

Definitions, Epidemiology, & Comorbidities

Nonalcoholic Fatty Liver Disease Ranges From Simple Steatosis To Nonalcoholic Steatohepatitis, A Chronic And Progressive Liver Disease¹⁻⁵

NAFLD: Nonalcoholic Fatty Liver Disease

• Entire spectrum of fatty liver disease in individuals without significant alcohol consumption

NAFL: Nonalcoholic	NASH: Nonalcoholic	NASH with
Fatty Liver	Steatohepatitis	Fibrosis
 Isolated steatosis (fat in ≥5% of hepatocytes) 	 Steatosis Ballooning Inflammation 	 NASH (steatosis, ballooning, inflammation) Mild: fibrosis stage 1 (F1) Significant: fibrosis stages 2 and 3 (F2/F3) Cirrhosis: fibrosis stage 4 (F4)

F, fibrosis stage; NAFL, nonalcoholic fatty liver; NAFLD, nonalcoholic fatty liver disease; NASH, nonalcoholic steatohepatitis.

1. Sheka AC, et al. JAMA. 2020;323(12):1175-83. 2. Alkhouri N, McCullough AJ. Gastroenterol Hepatol (N Y). 2012;8(10):661-8. 3. EASL-EASD-EASO. J Hepatol. 2016;64:1388-402.

4. Diehl AM, Day C. N Engl J Med. 2017;377:3063-72. 5. Honda et al. Int J Mol Sci. 2020;21:4039.

NASH is the inflammatory subtype of NAFLD, which can progress to cirrhosis, liver cancer, or result in death¹⁻⁵

NAFL, nonalcoholic fatty liver; NAFLD, nonalcoholic fatty liver disease; NASH, nonalcoholic steatohepatitis.

1. Sheka AC, et al. JAMA. 2020;323(12):1175-83. 2. Alkhouri N, McCullough AJ. Gastroenterol Hepatol (N Y). 2012;8(10):661-8. 3. EASL-EASD-EASD. J Hepatol. 2016;64:1388-402.

4. Diehl AM, Day C. NEJM. 2017;377:3063-72. 5. Honda et al. Int J Mol Sci. 2020;21:4039.

Common conditions associated with NAFLD	Other conditions associated with NAFLD	
 Obesity 	 Hypothyroidism 	
 T2D 	 Obstructive sleep apnea 	
 Dyslipidemia 	 Hypopituitarism 	
 Polycystic ovary 	 Hypogonadism 	
syndrome	Psoriasis	
 Metabolic syndrome* 		

- * Metabolic syndrome is defined by the presence of ≥3 of the following features or established conditions:
 - Obesity or waist circumference >102 cm in men or >88 cm in women
 - Triglyceride level ≥150 mg/dL or more
 - HDL cholesterol <40 mg/dL in men and <50 mg/dL in women
 - Systolic blood pressure ≥130 mmHg or diastolic blood pressure ≥85 mmHg or on treatment for hypertension
 - Fasting plasma glucose level 110 mg/dL or greater

HDL, high-density lipoprotein; NAFLD, nonalcoholic fatty liver disease; T2D, type 2 diabetes. 1. Chalasani N, et al. *Hepatology*. 2018;67(1):328-357.

- There is an association between NAFLD/NASH and the risk of developing multiple extrahepatic complications
- The magnitude of risk is linked to the severity of disease, particularly the stage of liver fibrosis

F, fibrosis stage; HCC, hepatocellular carcinoma; NAFLD, nonalcoholic fatty liver disease; NASH, nonalcoholic steatohepatitis.

1. Diehl AM, Day C. NEJM. 2017;377:3063-72. 2. Kanwal F, et al. Gastroenterology. 2018;155(6):1828-1837

Nonalcoholic Steatohepatitis Is An Increasing Indication For Liver Transplantation In The US

Prevalence of the most common chronic liver disease (CLD) etiologies in waitlisted liver transplant candidates without HCC.¹

NASH is currently the leading cause for liver transplant (LT) waitlist registration/liver transplantation in females and the second leading cause overall ^{1,2}

ALD, alcoholic liver disease; CHB, chronic hepatitis B; CHC, chronic hepatitis C; CLD, chronic liver disease; HCC, hepatocellular carcinoma; NASH, nonalcoholic steatohepatitis; PBC, primary biliary cirrhosis; PSC, primary sclerosing cholangitis. 1. Younossi et al. *Clin Gastroenterol Hepatol.* 2021;19:580-589. 2.Noureddin et al. *Amer. J. Gastroenterol.* 2018;113:1649-1659.

Pathophysiology

Hepatic Lipotoxicity Is A Key Driver Of Nonalcoholic Steatohepatitis And Fibrosis In The Liver

Wound-healing responses

Inflammation, vascular remodeling, fibrogenesis, and accumulation of immature liver epithelial cells

responses triggered by lipotoxicity

Intrahepatic Thyroid Hormone Signaling Plays A Critical Role In Lipid Metabolism In The Liver

- In a healthy liver, intrahepatic thyroid hormone signaling activates lipid metabolism and contributes to normal liver function¹⁻⁵
- In an injured (or unhealthy) liver, there can be impairment of intrahepatic thyroid hormone signaling⁴
- Impaired hepatic thyroid hormone signaling can lead to hepatic steatosis and the accumulation of lipotoxic fat species³⁻⁵

TH, thyroid hormone.

1. Ritter, et al. *Hepatology*. 2020;72(2):742-752. 2. Sinha, et al, *Nat Rev Endocrinol*. 2018;14(5):259–269. 3. Moran, et al. *J Clin Endocrinol Metab*. 2021;106(5):e2005-e2014. 4. Bohinc et al. *Endocrinology*. 2014;155(11):4591–4601. 5. Bano et al. *J Clin Endocrinol Metab*. 2016;101(8):3204-3211. 6. Mantovani et al. *Thyroid*. 2018;28(10):1270-1284.

The Thyroid Hormone Receptor-β Pathway Plays A Key Role In Hepatic Lipid Metabolism

- Thyroid hormones (TH) act on multiple pathways to maintain homeostasis in the liver by controlling¹⁻⁴:
 - Fatty acid oxidation
 - Mitophagy and mitochondrial biogenesis
 - Cholesterol metabolism
 - Carbohydrates metabolism
- THR-β is responsible for TH effects on metabolism in the liver as determined in preclinical models²
- In clinical trials, THR-β agonism has demonstrated beneficial effects on lipid metabolism^{5,6}

ATP, adenosine triphosphate; DNL, de novo lipogenesis; FAO, fatty acid beta oxidation; FFA, free fatty acid; HDL, high-density lipoprotein; LDL, low-density lipoprotein; TAG, triacylglycerol; TCA, tricarboxylic acid; THR-β, thyroid hormone receptor β; VLDL, very low-density lipoprotein.
1. Ritter et al. *Hepatology*. 2020; 72(2):742-752. 2. Saponaro et al. *Front Med*. 2020; 7:331. 3. Sinha et al. *Nat Rev Endocrinol*. 2018;14(5):259-26. 4. Taub R, et al. *Atherosclerosis*. 2013;230(2013):373-380. 5. Taub et al. NASH-TAG 2018 Poster. 6. Harrison SA, et al. *Lancet*. 2019;394(10213):2012-2024.

Morbidity & Mortality

NASH With Fibrosis Is Associated With An Increased Rate Of Mortality

All NAFLD histological stages were associated with significantly increased overall mortality, and this risk increased progressively with worsening histology

Cumulative incidence of all-cause mortality according to the presence and histological severity of NAFLD¹

HCC, hepatocellular carcinoma; NAFLD, nonalcoholic fatty liver disease; NASH, nonalcoholic steatohepatitis. 1. Simon et al. *Gut.* 2021;70:1375-1382. 2. Hagström et al. *J Hepatol.* 2017;67:1265-1273.

All NAFLD fibrosis stages were associated with significantly increased overall mortality, and this risk increased progressively with worsening fibrosis stage

Cumulative incidence of all-cause mortality according to the histological fibrosis stage in NAFLD²

*Histological severity of NAFLD was defined in 4 categories, as simple steatosis, NASH without fibrosis, non-cirrhotic fibrosis, and cirrhosis.

The risk of liver-related death is statistically higher only after progression to F2 or higher¹

Fibrosis stage-specific liver-related mortality rate ratios¹

Among patients with NASH, those with cirrhosis are at greater risk for decompensation, HCC or death compared with less advanced fibrosis²

Clinical Outcomes	F3 (n=159)	F4 CTP A5 (n=222)	F4 CTP A6 (n=77)
Overall mortality or liver transplantation	3%	11%	58%
First occurrence of a major clinical event	16%	28%	66%
Hepatic decompensation	19%	59%	85%
HCC	8%	19%	15%
Non-hepatic malignant neoplasm	38%	16%	0
Major vascular event	35%	6%	0

CI, confidence interval; CTP, Child–Turcotte–Pugh; F, fibrosis stage; HCC, hepatocellular carcinoma; NASH, nonalcoholic steatohepatitis. Adapted from: 1. Dulai et al. *Hepatology*. 2017;65:1557-156. 2. Vilar-Gomez, et al. *Gastroenterology*. 2018;155:443–457.

Liver Events and Causes of Death

Outcome, n (%)	Number (n=193)	
Death or OLT		
Cardiovascular disease	74 (38.3%)	
Non-liver cancer	36 (18.7%)	
Cirrhosis complications	15 (7.8%)	
Hepatocellular carcinoma	2 (1%)	
Liver transplantation	1 (0.5%)	
Infections	15 (7.8%)	
Other	35 (18.1%)	
Unknown	15 (7.8%)	

CVD, cardiovascular diseases; NAFLD, nonalcoholic fatty liver disease; OLT, orthotopic liver transplant. 1. Angulo P, et al. *Gastroenterology*. 2015;149:389-397.

Changes In Disease Activity (NAS) Are Associated With Changes In Fibrosis¹

- High NAS at baseline has been associated with progression to fibrosis stage F3-F4.
 - NAS (NAFLD activity score) is the sum of scores for steatosis, lobular inflammation, and ballooning; scores range, 0 to 8, with 8 indicating more severe disease
- An improvement (ie., reduction) in NAS is associated with a decrease in fibrosis stage.
 - Specifically, a 2-point or greater reduction in NAS is associated with fibrosis regression.
- Development and progression of fibrosis in patients with NAFL alone was associated with development of steatohepatitis.

The trajectory of fibrosis change is directly associated with changes in disease activity (NAS) and is independent of changes in body weight

NAFL, nonalocholic fatty liver; NAS, NAFLD activity score 1. Kleiner et al. *JAMA Network Open*. 2019 2(10).

Patient Identification

1. Simple Evaluation Scores

- Easily calculated using information from standard liver tests and patient data¹
- FIB-4, NFS, and APRI are recognized in guidelines as clinically useful in identifying patients with a higher probability of F3/F4 fibrosis^{1,2}

2. Imaging Techniques

- Conventional ultrasound: historically used to identify steatosis despite known limitations¹
- MRI/MRI-PDFF: accurate for detecting and quantifying steatosis¹
- FibroScan[®] (VCTE): can assess both steatosis (CAP) and fibrosis (LSM); pointof-care¹
- MRE: accurate for detecting and quantifying fibrosis¹

3. Proprietary Serum Tests

- Tests for biomarkers to determine the presence of advanced fibrosis (F3/F4) or active NASH^{1,3}
- ELF: FDA recently granted marketing authorization via the De Novo review pathway, and ELF is also widely used outside the US to determine the presence of F3/F4⁴
- Other investigational serum tests include: PRO-C3 or NIS-4^{3,5}

APRI, aspartate aminotransferase to platelet ratio index; CAP, controlled attenuation parameter; CK-18, cytokeratin 18; ELF, enhanced liver fibrosis; FDA, Food and Drug Administration; F, fibrosis stage; FIB-4, fibrosis-4 index for liver fibrosis; LSM, liver stiffness measurement; MRI, magnetic resonance imaging; MRI-PDFF, magnetic resonance imaging derived proton density fat fraction; MRE, magnetic resonance elastography; NAFLD, nonalcoholic fatty liver disease; NAS, NAFLD activity score; NFS, NAFLD fibrosis score; PRO-C3, N-terminal type 3 collagen propeptide; VCTE, vibration-controlled transient elastography. 1. European Association for Study of Liver. *J Hepatol.* 2021;75(3):659-89. 2. A Chalasani N, et al. *Hepatology.* 2018;67(1):328-57. 3. Loomba R, Adams LA. *Gut.* 2020;69:1343–1352. 4. https://www.siemens-healthineers.com/en-us/laboratory-diagnostics/assays-by-diseases-conditions/liver-disease/elf-test (accessed January 2022). 5. https://nis4.com/ (accessed January 2022).

Fibroscan[®] and FibroMeter[™], MRE, and ELF are examples of noninvasive tests correlated to outcomes¹⁻³

ELF, enhanced liver fibrosis; MRE, magnetic resonance elastography; NAFLD, nonalcoholic fatty liver disease

1. Boursier J, et al. J Hepatol. 2016;65(3):570-578 2. Gidener T, et al. Clin Gastroenterol Hepatol. 2021;19(9):1915-1924. 3. Younossi. Gastroenterology, 2020.

AASLD Screening Algorithm Related To Nonalcoholic Fatty Liver Disease

AASLD, American Association for the Study of Liver Diseases; ALT, alanine aminotransferase; AST, aspartate aminotransferase; cT1, corrected T1; ELF, elevated liver fibrosis; FIB-4, fibrosis-4 index; GI, gastroenterology; MRE, magnetic resonance elastography; NIT, non-invasive tests; PCP, primary care physician; VCTE, vibration-controlled transient elastography. Adapted from Rinella M et al. *Hepatology*. 2023;77(5):1797-1835.

Patient Perspective

Patient Reported Symptoms Of Nonalcoholic Steatohepatitis

There are often no specific symptoms associated with NASH, the most common are fatigue, overweight and abdominal pain

NASH, nonalcoholic steatohepatitis. Adapted from Cook, et al. *Front Med.* 2019;6:1-14.

NASH Management

P

Energy restriction

- Calorie restriction (500-1,000/day)
- 7-10% weight loss target
- Long-term maintenance approach

Coffee consumption

• No liver-related limitations

Macronutrient composition

- Low-to-moderate fat intake
- Low-carbohydrate ketogenic or high protein diets
- Mediterranean diet rich in monounsaturated fatty acids, with high intakes of olive oil, nuts, vegetables, fruits, legumes, whole grains, and fish

Comprehensive lifestyle approach

Reduce fructose intake

 Avoid fructose-containing food and drink

Control daily alcohol intake

• Strictly below 30 g for men and 20 g for women

Increase physical activity

- 150-200 min/week moderate intensity in 3-5 sessions
- Resistance training to promote musculoskeletal fitness and improve metabolic factors

There Are Currently No FDA-Approved Therapies For NASH

- Lifestyle management is the cornerstone of therapy in patients with NASH, but success is difficult to achieve and maintain over time¹
 - Weight loss has been associated with improvements in measures of NAFLD
 - Including pharmacological derived weight loss
 - Weight loss has been associated with fibrosis reduction
 - Bariatric surgery²
 - Not all drugs associated with driving improvements in insulin sensitivity lower the NAS^{3,4}
- There is strong scientific rationale for mechanisms that restore metabolic processes in the liver⁵

NAFLD, nonalcoholic fatty liver disease; NAS, NASH activity score; NASH, nonalcoholic steatohepatitis

1. Tapper and Lai. Hepatology. 2016;63:1184–1189. 2. Laissailly et al. Gastroenterology. 2020;159:1290-1301 3. Shields et al Ther. Adv. Gastroenterol. 2009, 2:157-163

4. Cui et al J. Hepatol. 2016, 65:3969-376 5. Vuppalanchi et al. Nature Reviews. 2021;18(6):373-392.

Several Treatments Are In Development Targeting Different Molecular Pathways Involved In NASH, Including Metabolic Processes

NASH is a multifactorial disease, and multiple pathways contribute to its pathophysiology

ACC, acetyl-CoA carboxylase; DNL, de novo lipogenesis; ER, endoplasmic reticulum; FASN, fatty acid synthase inhibitor; FFA, free fatty acid; FGF, fibroblast growth factor; FXR, farnesoid X receptor; GLP-1RA, glucagon-like peptide-1 receptor agonist; IL-6, interleukin-6; JNK, c-Jun N-terminal kinase; LPS, lipopolysaccharide; NASH, non-alcoholic steatohepatitis; NLRP3, NLR family pyrin domain containing 3; PPAR, peroxisome proliferator-activated receptor; ROS, reactive oxygen species; SHP, small heterodimer partner; SREBP-1, sterol regulatory element binding protein-1; TGR5, Takeda G protein-coupled receptor 5; TGF-β, transforming growth factor beta; THR_β, thyroid hormone receptor β; TNF-α, tumor necrosis factor alpha; UPR, unfolded protein response; VLDL, very-low-density lipoprotein.

Figure adapted from Konerman MA, et al. J Hepatol. 2017;68:362-75.

Madrigal Pharmaceuticals

There are several investigational drugs for NASH in Phase 3 studies; however, failure rate has been high¹

NASH treatment is complex, and many investigational drugs thus far have failed to show efficacy and safety:

Number of active and failed Phase 2/3 studies in NASH¹

1. Pharmaceutical Online. 2020. Available at: https://www.pharmaceuticalonline.com/doc/analysis-of-the-non-alcoholic-steatohepatitis-nash-drug-pipeline-market-sizing-up-the-first-wave-0001 [accessed March 2022]. For a current list of active Phase 3 programs, please visit: https://clinicaltrials.gov/

- Chronic and excessive steatosis induces lipotoxicity, inflammation and hepatocellular injury followed by fibrogenesis
- NASH with significant fibrosis can progress to cirrhosis and other outcomes with approximately 20% progressing rapidly
- When identifying NASH patients with significant fibrosis, it is critical to screen for metabolic comorbidities, rule out other causes of liver disease, and evaluate degree of fibrosis (which can be done using noninvasive approaches)
- There are no FDA-approved therapies for NASH; weight loss (via lifestyle modifications) is a key management strategy, but success is challenging to achieve and sustain over time for the majority of patients

Welcome

Presented By:

ARIZONA LIVER HEALTH[™]

Meeting App

Scan to Download the App

Network Name:

Liver Conference Password: DLC24

Thank you to the generous sponsors of The Desert Liver Conference 2024!

www.desertliver.com

DESERT LIVER CONFERENCE

Madrigal

THOME ARTONA THANK YOU TO OUR GENEROUS SPONSORS!

A few "housekeeping" items.....

- Breaks will take place in the exhibit spaces.
- The link to claim your CME/ABIM MOC (10.25 credits) is in your mobile app and flyer in your bag.
- This meeting is being recorded and we have attendees who are logged in virtually. Please use the aisle microphones or raise your hand for a microphone for the Q&A to be captured for the virtual audience.
- Conference information can be found on the Cvent Meeting App. Please visit the helpdesk for assistance with the app.
- Please visit the helpdesk to address any questions, emergencies, accommodations, or needs during the conference.
- Restrooms are in the foyer area. Please follow the signage or visit the helpdesk for directions.
- Please place all mobile devices in silent/airplane mode.
- Parking lot gates will be open during morning and meeting ending times. For valet tickets, please visit the conference helpdesk.

Drug-Induced Liver Injury (DILI) – A Clinical Update

Desert Conference - March 2024

Raj Vuppalanchi, MD Professor of Medicine |Director of Hepatology Indiana University School of Medicine <u>rvuppala@iu.edu</u>

SCHOOL OF MEDICINE GASTROENTEROLOGY AND HEPATOLOGY DEPARTMENT OF MEDICINE

Outline

Basics & Epidemiology

Evaluation and Management

Events of Special Interest and Recent Updates

Terminology

- Jaundice | Icterus | Hyperbilirubinemia
- Hepatotoxicity
 - clinical report of jaundice or icterus
 - total serum bilirubin >2 x ULN (FDA)
 - >2.5 x ULN (DILIN)
- Liver enzymes AST/ALT
- Biliary enzymes ALP/GGT
- Hepatocellular injury →histologic changes
- Hepatocellular pattern
 - R ratio ≥5 (ALT/ULN ÷ ALP/ ULN) DILIN
 - ALT or AST (\geq 3x) and ALP (\leq 3x) FDA

Hoofnagle et al. N Engl J Med 2019;381:264-73.

41

Sources of DILI Literature

Investigator initiated	Clinical Trials	Pharmacovigilance Database	DILI Registries
Case reports	Safety Data	VigiBase TM (WHO)	Spanish DILI (1994)
Case series (single center)	Adjudication committees	FAERS (FDA)	US DILIN (2004)
		National databases	LATINDILI (2011)
		Institutional databases	IN-DILI (2013)
Incomplete data Inadequate evaluation Local expertise	- J J Se In N	elf-reported avestigator reported o causality assessment	7 1 1

DILI Network (DILIN)- 2003 to present

Registry

- Retrospective
- Prospective (injury w
- Causality assessment

Types and Phenotypes of DILI

	Table 2. Phenotypes of D	Drug-Induced Liv	Table 3.	Most Frequent Causes of Idi	osyncratic Prescr	iption Drug-Ind	duced Liver Injury.☆
Table 1. Drug-In	Phenotype	Type of Liver Injury	Rank	Agent	Year of FDA Approval	No. (%)†	Major Phenotypes
Variable	Acute hepatic necrosis	Direct	1	Amoxicillin-clavulanate	1984	91 (10 1)	Cholestatic or mixed hepatitis
Frequency			2	Isoniazid	1952	48 (5 3)	Acute benatocellular benatitis
Dose-related	Enzyme elevations	Direct	3	Nitrofurantoin	1953	42 (4.7)	Acute or chronic hepatocellular hepatitis
Predictable	Acute hepatitis	Idiosyncratic, indirect	4	TMP-SMZ	1973	31 (3.4)	Mixed hepatitis
Reproducible in	Cholestatic hepatitis	Idiosyncratic	5	Minocycline	1971	28 (3.1)	Acute or chronic hepatocellular hepatitis
models	Mixed hepatitis	Idiosyncratic	6	Cefazolin	1973	20 (2.2)	Cholestatic hepatitis
Latency (time to	initiaed hepatities	leiosyneidude	7	Azithromycin	1991	18 (2.0)	Hepatocellular, mixed, or cholestatic hepatitis
Phenotypes	Chronic hepatitis	Idiosyncratic, indirect	8	Ciprofloxacin	1987	16 (1.8)	Hepatocellular, mixed, or cholestatic hepatitis
	Bland cholestasis	Unknown,	9	Levofloxacin	1996	13 (1.4)	Hepatocellular, mixed, or cholestatic hepatitis
		possibly idio- syncratic	10	Diclofenac	1988	12 (1.3)	Acute or chronic hepatocellular hepatitis
Most commonly	Acute fatty liver, lactic	Direct	11	Phenytoin	1946	12 (1.3)	Hepatocellular or mixed hepatitis
cated agents	hepatic failure		12	Methyldopa	1962	11 (1.2)	Hepatocellular or mixed hepatitis
	Nonalcoholic fatty liver	Indirect, direct	13	Azathioprine	1968	10 (1.1)	Cholestatic hepatitis
Cause	Sinusoidal obstruction syndrome	Direct	* Data are	from Chalasani et al.13 The	listed agents are	those most free	quently implicated in a total of 1257 cases of dru
	Nodular regenerative hyperplasia	Direct	induced (in 899 c	iver injury reported betweer ases). Agents that ranked fr	n 2004 and 2013; om 14th to 25th	agents were cla in frequency we	assified as definite, highly likely, or probable caus re hydralazine, lamotrigine, and mercaptopurine

* The phenotypes are listed very generally P denotes alkaline phosphatase, ALT ala

telithromycin, terbinafine, and valproic acid (7 cases each). FDA denotes Food and Drug Administration. † The percentages have been calculated on the basis of a total of 899 cases of drug-induced liver injury.

Intrinsic DILI (Direct Hepatotoxicity)

- dose-dependent at sublethal doses
- reproducible in animals
- predictable latency period
- distinct liver histology
- inflammatory milieu increases the risk of liver injury
- identified in preclinical or clinical trials

Overdose settingsHepatic impairment

EXCEDRIN.	NyQuil	Robitussin	SUDAFED	Allassdar Plas	EXCEDRIN	NyQuil	Robitussin	SUDAFED	Allar Selton Plus nu
Therallul serve course	TYLENOL 	ZICAM Matci Symptom	ANACIN	оннов Солбонио) ПИТЕНОГГ ПОТЕНОГГ ПОТЕНОГГ Аликание Аликани	Therafid solutions	TYLENOL 	ZICAM		очнова стан Сладонић Јујемој Сладонић Сладонић Ариз 211
Dimetapp	Panada Jan		Coricidin HBP	Tylenof with codding there exists a there exists a	Dimetapp	Panada Internet internet		Coricidin HBP	Tylenof with codelor finite reserve finite reserve finit reserve finite reserve finite reserve finite reserve f
NC ADA CON HOP A	Marrie Contraction of the second seco	Horrester Ricerrate and Areigninophies Tables, USP	Barrier Harrier Historier	NY SERVICE D'ENTRACET* D'Entrativ REDEA BORN NUMBER NUMBER NUMBER	NC STREET IN WCOON HPP IN TO ANY IN THE INFORMATION IN THE INFORMATION IN THE INFORMATION IN THE INFORMATION IN THE INFORMATION INTERNATION INTERNATIONI INTERNATIONI	Constanting of the second seco	Hydracodours Belaritrate and Acrigationplan Tallers, UKP	Martinet Mar	ULTRACET Cling tonar Kitson Antoniston Kitson Link
	NyQuil	Robitussin	SUDAFED	Allas Schner Plus nu	EXCEDRIN.	NyGuil MyGuil	Robitussin	SUDAFED	Alla Setter Plas nu
Therafili, shiri colo	TYLENOL 	ZICAM			Therafill solar coro	TYLENOL AM	ZICAM Multi-Symptom	ANACIN	оннова и на Оністичу УУЛЕНОГ Макаловання Напаловання Арна Злії
Dimetapp	Panado IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	DayQuil	Coricidin HBP and the	Tylenol' white codeline alternational alternational manual for the second manual for the	Dimetapp	Panado		Coricidin HBP	Tylenof with codelate states No.3 transmission R_+th

CBD- ALT elevations within 2–4 weeks

Green Tea Extract (GTE)

- Epigallocatechin-3-gallate (EGCG) is the most abundant and potent catechin contained within GTE, comprising typically ~40% of the total polyphenol content.
- open-label, single-dose | single oral dose of 400 mg
- 94% pure EGCG

Obeticholic acid in Cirrhosis

	Baseline total bilirubin	<2X ULN (n=4)	Baseline total bilirubin >2X ULN (n=4)			
Number of patients with PBC/PSC	2/2		4/0			
Age, years	52 ± 21		52 ± 9			
Female	2		4			
Caucasian	3		4			
BMI, kg/m2	31 ± 2		22 ± 1			
Cirrhosis or portal hypertension at baseline	3 of 4		4 of 4			
OCA start dose	5 mg once c	laily	5 mg once v	veekly		
OCA dosages at the time of jaundice	5 mg daily, 10 mg daily, 10 m	g three times weekly	Not applic	able		
OCA dose at the time of decompensation			5 mg once weekly (n=1), 5 mg daily (n=1), 10 mg daily (n=2)			
Duration of OCA use, days	193 ± 114		200 ± 89			
Liver biochemistries	Onset	Peak	Onset	Peak		
• ALT, U/L	88 ± 53	156 ± 68	147 ± 92	216 ± 86		
• AST, U/L	100 ± 52	156 ± 64	164 ± 60	205 ± 37		
Alkaline Phosphatase, U/L	464 ± 121	476 ± 121	699 ± 364	981 ± 508		
 Total bilirubin, mg/dL 	7.6 ± 5.1	13.6 ± 5.0	7.9 ± 3.4	14.7 ± 6.3		
R value	1.0 ± 0.6		0.9 ± 0.3			
• INR	1.2 ± 0.1		1.4 ± 0.5			
RUCAM score	6 ± 1		2 ± 0			
DILIN severity score	4 (n=3), 5 (n	i=1)	4 (n=1), 5 ((n=3)		
Decompensating event	Ascites (2	2)	Ascites (2), Variceal hemorrhage (1)			
Liver transplantation	1 of 4		3 of 4	3 of 4		

John E Eaton ¹, Raj Vuppalanchi ², et al. Liver Injury in Patients With Cholestatic Liver Disease Treated With Obeticholic Acid Hepatology. 2020 Apr;71(4):1511-1514

Obeticholic acid Box Warning

Dose

FDA Drug Safety Communication

FDA adds Boxed Warning to highlight correct dosing of Ocaliva (obeticholic acid) for patients with a rare chronic liver disease

This is an update to the FDA Drug Safety Communication: FDA warns about serious liver injury with Ocaliva (obeticholic acid) for rare chronic liver disease issued on <u>9-21-2017</u>.

Disease state

FDA Drug Safety Communication

FDA

Due to risk of serious liver injury, FDA restricts use of Ocaliva (obeticholic acid) in primary biliary cholangitis (PBC) patients with advanced cirrhosis Adding and updating warnings

05-26-2021 FDA Drug Safety Communication

U.S. FOOD & DRUG

ADMINISTRATION

Indirect Hepatotoxicity

Indirect action of the drug/agent on the liver or immune system

- Antineoplastic agents/steroids/rituximab in patients with past exposure to hepatitis B (core positive)
- Immune checkpoint inhibitors
- SARS-CoV-2 vaccine-induced autoimmune like hepatitis.

Letter to the Editor

JOURNAL OF HEPATOLOGY

Unexplained liver test elevations after SARS-CoV-2 vaccination

Idiosyncratic

- may be dose-related
- drug-specific factors (metabolism/solubility/permeability)
- patient-specific factors (HLA and non-HLA genes)
- not recognized in preclinical studies
- may not be recognized in clinical trials
- most commonly identified post-marketing

Hepatic Etiology (N = 406, 55%)		Extra-Hepatic Etiology (N = 326, 455	%)
Decompensation of pre-existing chronic liver disease	20.5%	Sepsis/abnormal hemodynamics	22%
Gilbert's syndrome	5.6%	Gall stone disease	14%
Alcoholic hepatitis	16%	Hemolysis	2.5%
Acute viral liver disease		Malignancy	
HBV	5%	Pancreato-biliary	2.7%
HCV	2%	Metastatic	3.5%
HAV	1%		
EBV	0.5%		
HIV	0.3%		
DILI			
Acetaminophen	3.3%		
HAART	0.4%		
Valproate	0.1%		
Metabolife	0.1%		
Acute autoimmune hepatitis	0.3%		

Top 10 Drugs and Mortality

Chalasani N et al.	(2015)	Andrade et al. (2005)		Bessone et al. (2017)		Bessone et al. (2017)		
N = 899 (USA		N = 461 (S	Spain)	N = 206 (Latin America)		N = 867 (S	N = 867 (Spain)	
AMX/CLA	91 (10.1%)	AMX/CLA	59 (12.8%)	AMX/CLA	20 (9.7%)	AMX/CLA	186 (21.5%)	
Isoniazid	48(5.3%)	INH +R + Pyr	22 (4.8%)	Diclofenac	12 (5.8%)	Diclofenac	16 (1.8%)	
Nitrofurantoin	42(4.7%)	Ebrotidin	22 (4.8%)	Nimesulide	11 (5.3%)	Nimesulide	9 (1.0%)	
Cotrimoxazole	31 (3.4%)	Ibuprofen	18 (3.9%)	Nitrofurantoin	11 (5.3%)	Nitrofurantoin	-	
Minocycline	28 (3.1%)	Flutamide	17 (3.7%)	Cyproterone	9 (4.4%)	Cyproterone	3 (0.3%)	
Cefazolin	20 (2.2%)	Ticlopidine	13 (2.8%)	Ibuprofen	7 (3.4%)	Ibuprofen	22 (2.5%)	
Azithromycin	18 (2.0%)	Diclofenac	12 (2.6%)	INH + R + Pyr	7(3.4%)	INH + R + Pyr	29 (3.3%)	
Ciprofloxacin	16 (1.8%)	Isoniazid	9 (2.0%)	Carbamazepine	5 (2.4%)	Carbamazepine	8 (0.9%)	
Levofloxacin	13 (1.4%)	Medical Herbs	9 (2.0%)	Phenytoin	4(1.9%)	Phenytoin	3 (0.3%)	
Diclofenac	12 (1.3%)	Nimesulide	9 (2.0%)	Thiamazole	4 (1.9%)	Thiamazole	7 (0.8%)	
Mortality	10%*				4.6%		4%	

- * 16% mortality in patients with pre-existing liver disease.
- * 5.2% in those without pre-existing liver disease.
- * Four of nine patients with Stevens-Johnson Syndrome (SJS) died.

Temporal Trends in DILIN

Liver injury from herbals and dietary supplements in the U.S. Drug-Induced Liver Injury Network. Navarro VJ, Barnhart H, Bonkovsky HL, Davern T, Fontana RJ, Grant L, Reddy KR, Seeff LB, Serrano J, Sherker AH, Stolz A, Talwalkar J, Vega M, Vuppalanchi R. Hepatology. 2014 Oct;60(4):1399-408.

Revolving Cast of HDS Agents

- Black cohosh (2008)
- Hydroxycut (2009)
- Herbalife (2010)
- Oxy-Elite Pro (2015) (PMID: 24113901)
- Anabolic steroids (2019) (PMID: 30934130)
- Green tea extract (2019) (PMID: 32892374)
- Ashwagandha (2020) (PMID: 31991029)
- Garcinia Cambogia (2021) (PMID: 34400337)
- Kratom (2021) (PMID: 33257199)
- Turmeric (PMID: 36252717)

Liver injury from G. cambogia ± GTE

Age: 17 to 54 years,

Onset: 3 to 223 days (median = 51) after the start

Phenotype: The liver injury was hepatocellular with jaundice (peak values of aminotransferase were significantly higher (2001 \pm 1386 U/L). HLA-B*35:01 allele was significantly higher in the *G. cambogia* containing HDS (55%) compared to patients due to other HDS (19%) (p = 0.002) and those with acute liver injury from conventional drugs (12%) (p = 2.55x10⁻⁶).

Outcomes: One patient died, one required liver transplantation, and 91% were hospitalized.

HLA-B*35:01 and Green Tea-Induced Liver Injury

- Symptoms 15-448 days (median = 72 days) after start
- The liver injury was typically hepatocellular (95%).
- Most patients were jaundiced (83%)
- The course was judged as severe in 14 patients (35%), necessitating liver transplantation in 3 (8%)
- Rarely resulting in chronic injury (3%)
- HLA-B*35:01, found in 72% of green tea cases

Chemical Analysis of Implicated Agents

Patient		Garcinia cambogia /HCA		GT Extract/EGCG	Total Catechins	EGCG
		Label Claim	Chemical profiling	Label Claim	Chemic	al profiling
1.	Mega-T Green Tea Extract	NO	Not detected	YES	Detected	Detected
2.	Hydroxycut	YES	Detected	YES	Detected	Detected
3.	Quick Loss Diet Spray with Hoodia	YES	Detected	YES	Not detected	Not detected
	Visalus Sciences Vi-Slim Metab-Awake	NO	Not detected	YES	Detected	Detected
1	OmegaKrill Pure Concentrated Krill Oil	NO	Not detected	NO	Not detected	Not detected
4.	Visalus Sciences Neuro	NO	Not detected	YES	Detected	Detected
	Visalus Sciences Vi-Trim	YES	Detected	NO	Not detected	Not detected
5.	Hydroxycut	NO	Not detected	YES	Detected	Detected
G	Fat Burner	YES	Detected	YES	Detected	Detected
0.	Great Start-Energy Formula	NO	Not detected	YES	Detected	Detected
7.	Garcinia Cambogia X Treme	YES	Detected	NO	Not detected	Not detected
8.	Super Plus Weight Loss Enhancer	Yes	Not detected	Yes	Detected	Detected

Vuppalanchi et al. Clin Gastroenterol Hepatol. 2022 Jun;20(6):e1416-e1425.

DILI Clinical Scenarios

Liver Disease Symptoms

- Skin and eyes that appear yellowish (jaundice)
- Abdominal pain and swelling
- Swelling in the legs and ankles
- Itchy skin
- Dark urine color
- Pale stool color, or bloody or tar-colored stool
- Chronic fatigue
- Nausea or vomiting
- Loss of appetite
- Tendency to bruise easily

Clinical Presentations of DILI

- Asymptomatic (liver enzyme abnormalities)
 - Any one of the following
 - ≥ 5 ULN of ALT
 - \geq 2 ULN of Alk P (of liver origin)
 - \geq 3 ULN of ALT **&** \geq 2 ULN of total bilirubin
 - In the absence of a competing etiology
- Symptomatic
 - Systemic symptoms
 - General (fatigue, itching, pain etc.)
 - Immuno-allergic (fever, rash, eosinophilia)
 - Jaundice/coagulopathy/ascites
 - Fulminant hepatic failure

Nodular Regenerative Hyperplasia

• 66-year old woman with new-onset ascites while participating in a phase Ib/II clinical trial (NCT00875979) to receive T-DM1 3mg/kg intravenously every 3 weeks plus pertuzumab 840mg intravenous loading dose once, followed by 420 mg intravenously every 3 weeks

Nodular Regenerative Hyperplasia After Treatment With Trastuzumab Emtansine. Force J, Saxena R, Schneider BP, Storniolo AM, Sledge GW Jr, Chalasani N, **Vuppalanchi** R. J Clin Oncol. 2016 Jan 20;34(3):e9-12.

Non-cirrhotic Portal Hypertension

Ascitic fluid analysis

SAAG: >1.1

- Transjugular liver biopsy and portage pressure measurements
 - WHVP: 28 mm Hg
 - FHVP: 15 mm Hg
 - HVPG: 13 mm Hg

- A. Patient 1. Reticulin stain highlights thinned out plates (arrows) alternating with thickened plates (asterix) creating a nodular hepatic parenchyma in the absence of fibrosis.
- B. Patient 1. Immunohistochemical stain for the endothelial marker, CD34 highlights endothelial cells around portal tract (arrows) in normal liver. CD34 diffusely marks sinusoidal cells in liver biopsy. Arrows point to a portal tract.
- C. Patient 2. Reticulin stain highlights thinned out plates (arrows) alternating with thickened plates (asterix) creating a nodular hepatic parenchyma in the absence of fibrosis.

Pseudocirrhosis and Liver Failure

47-year-old woman with new-onset jaundice and ascites while on therapy with Palbociclib and letrozole for recurrent breast Ca

Sinusoidal Obstruction Syndrome

Manifestations of DILI

	Typical	Atypical
Common	Uncommon	Uncommon
Acute liver injury - hepatocellular - mixed	Auto-immune hepatitis (minocycline, nitrofurantoin)	Drug-induced steatosis + steatohepatitis (amiodarone, valproic acid, tamoxifen, lomitapide, mipomersen, peg-aspargase)
- cholestatic	Bland cholestasis (anabolic steroids)	Hepatic neoplasms (oral contraceptive pills, vinyl chloride, thorostat, danazol)
	Granulomatous hepatitis (allopurinol, TMP-SMX, hydralazine, diltiazem)	Hepatocellular deposits (amiodarone, hypervitaminosis A, phenobarbital)
	Vanishing bile duct syndrome (amoxicillin-clavulanate, carbamazepine, chlorpromazine)	Hepatoportal sclerosis (hypervitaminosis, vinyl chloride, arsenicals)
	Chronic liver injury or cirrhosis (nitrofurantoin, amiodarone, tamoxifen, methotrexate)	Peliosis hepatis (danazol, oxaliplatin, vinyl chloride)
	Isolated alkaline phosphatase elevations (anti-seizure medications)	Nodular regenerative hyperplasia (Azathioprine, mercaptopurine, Trastuzumab emtansine, oxaliplatin, didanosine)
		Sinusoidal obstruction syndrome (busulfan, alkaloids, gemtuzumab, palbociclib)

Diagnosis of DILI

Temporal relationship

Dechallenge

Signature pattern

Exclusion of competing etiology

Known hepatotoxin

Rechallenge

Temporal Relationship

Latency: variable and drug-specific

- Short: 24 to 72 hours after starting
 - Sulfonamides, macrolide antibiotics
- Long latency: 3 to 12 months after starting
 - isoniazid, flutamide
- Very long latency: several years after starting
 - Minocycline, nitrofurantoin, amiodarone

Time to Recovery

Improves within a few days to a week

- Rapid (acetaminophen and niacin)
- Complete resolution (several weeks)

Chronic (>6 months)

- Complete resolution
- Persistent

Clinical Signature

• Injury pattern (R: ALT/ULN ÷ ALP/ULN)

- R<2: Cholestatic (e.g. anabolic steroids)
- 2-5: Mixed (e.g. Augmentin)
- R>5: Hepatocellular (e.g. INH)

• Immuno-allergic hepatitis (rash,

fever, facial edema, myalgia, arthralgia, eosinophilia and atypical lymphocytosis)

- Short latency (e.g. allopurinol)
- DRESS syndrome (e.g. telaprevir)

Work Up – R/O Competing Etiology

- Very high index of suspicion
- A careful history
 - Risk factors for viral hepatitis, alcohol use, weight gain, history of autoimmune disease, history of cardiac failure, shock, or septicemia, history of all drug intake, including time of starting and stopping prescription and nonprescription (over-the-counter) drugs and herbals within the previous 3 month
- Laboratory and Imaging

Lab	Imaging
Viral hepatitis*	US/CT/MRI-MRCP
Autoimmune hepatitis	EUS/ERCP

*Epstein-Barr virus, hepatitis E, Cytomegalovirus, Herpes simplex virus

Hepatic Histology

 Can be helpful but not mandatory for diagnosis

Relationship between pathological injury

patterns and biochemical presentation.

May serve as a prognostic tool

Hepatitic

Hepatitic

Cholestatic

Cholestatic

Hepatitic

Kleiner DE, et al for Drug-Induced Liver Injury Network (DILIN). Hepatology. Volume: 59, Issue: 2, Pages: 661-670 2014

Necrosis

Value of Liver Biopsy

Distribution of 50 simulated causality scores pre- and post-liver biopsy review

- Liver histology review changed the causality score in 68% of patients
- Clarified the diagnosis of DILI in cholestatic or equivocal cases

RUCAM Score

•	Temporal relationship	(0 to 2)
•	Course	(-2 to 3)
•	Risk factors	(0 to 2)
•	Concomitant drug	(0 to -3)
•	Non-drug causes	(-3 to 2)
•	Prior reports/ information	(0 to 2)
•	Rechallenge	(-2 to 3)
		<u>Score (-8 to 14)</u>

Highly probable	>8
Possible	3-5
Probable	6-8
Unlikely	1-2
Excluded	≤0

Management of DILI

- Stop all non-essential drugs
- Symptomatic

Jaundice: low-fat diet/antipruritic agents (doxepin, hydroxyzine)

- DILI specific
 - N-acetylcysteine (Mucomyst PO or IV) for acetaminophen or ALF
 - L-carnitine (IV) for valproate
 - Cholestyramine for Leflunomide
 - Cholestyramine and ursodiol for cholestatic
 - Steroid only for drug-induced autoimmune hepatitis

Prognosis

- MELD score
- Development and Validation of a Model Consisting of Comorbidity Burden to Calculate Risk of Death Within 6 Months for Patients With Suspected Drug-Induced Liver Injury

http://gihep.com/calculators/hepatology/dili-cam/

Outcomes

Liver injury from herbals and dietary supplements in the U.S. Drug-Induced Liver Injury Network. Navarro VJ, Barnhart H, Bonkovsky HL, Davern T, Fontana RJ, Grand, Reddy KR, Seeff LB, Serrano J, Sherker AH, Stolz A, Talwalkar J, Vega M, Vuppalanchi R. Hepatology. 2014 Oct;60(4):1399-408.

Mortality from DILI

	Hepatocellular (%)	Cholestatic (%)	Mixed (%)
Andrade et al. 2005	7	5	2
Bjornsson and Olsson. 2008	12.7	7.8	2.4
Chalasani et al (2015) - Death/transplant - Liver transplant	11.6¶ 6.2	11.9 [¶] 2.9	5.4¶ 0
Proportion of deaths due to liver failure	58%	56%	18%

Chronic DILI – How Common is it?

Study	Rate of Chronicity	Study Cohort	Definition of chronicity	Follow-up or time set for chronic determination	Population based
Aithal & Day	30% (13/44)	Hospitalized DILI cases at single center identified in histology database	Abnormal liver biochemistries and/or liver imaging at invited clinic follow-up	5 years (range 1–19)	No
SADRAC	1.5% (11/712)	Hospitalized DILI cases identified in a national hospital database	Abnormal liver biochemistries and/or cirrhosis unexplained on subsequent admission(s)	13 years (range 6–19)	No
Spanish Registry	5.7% (28/493)	DILI cases referred from across Spain	Abnormal liver biochemistries	3–6 months	No
DILIN	12% (74/598)	DILI cases enrolled at 10 participating centers	Abnormal liver biochemistries, liver imaging, or histology	12 months	No
Iceland Study	7% (7/96)	DILI cases from total population of Iceland	Abnormal liver biochemistries	6 months	Yes

Drug-induced autoimmune-like hepatitis (DI-ALH)

Definite drug association	Probable drug association	Possible drug association	Possible HDS
Nitrofurantoin	Atorvastatin	Adalimumab	Black cohosh
Minocycline	Minocycline Diclofenac		Germander
Methyldopa	Propylthiouracil	Meloxicam	Hydroxycut
Hydralazine	Infliximab	Indomethacin	Ma huang
Imatinib/Masitinib	INH	Rosuvastatin	Dai-saiko-to
Alemtuzumab (monoclonal anti-CD52 antibody)		Terbinafine	

Test: antibodies	% positive in AIH cases	% positive in 'normal' population
ANA 1:60	68%-75%	15% (<40 ♀) - 24% (>40 ♀)
ASMA	52%-59%	Up to 43%
IgG >1,600 mg/dl	86%	5%
Anti-LKM	4%-20%	1%

Immune Checkpoint Inhibitors

- 3 types
 - CTLA-4 (cytotoxic T lymphocyte-associated protein 4)
 - PD-1 (programmed cell death protein 1)
 - PD-L1 (programmed cell death ligand 1)

	billmum BRAF ^A mi	ab+nivolumab "Metastatic elanoma 0/2015)			tuiline Tele	umali keivolum line metastotik al cali carde om (64/2013)	*		lpition HCI	umab+rikolumab Sifter surafenib (03/2020)	(pilimumab Pervi ousiy Untrin Malignant Plean (10/1	enivolumob fed Unvesnetable if Mesothellocus 1020)
ſ					Immu	notherap	y combin	nations			2220	-//
	ipilimumati nitvolumati ipilimumati ipilimumati Metastatic melanoma ocross BRAF status Solvago REI-K/dM (01/2016) (077)			-sivolumub MR metastatic P018)	CRC		Ipfilmumabeexistionab P ^{III} Treatment of Metastatic or Recurrent VSCLC (PD-12-25) (05/2020)					
						Pentroliconobendinih Pentrolizonob Istine renai cell cardinama Endometrial c (04/2015) (05/20			inib Absolizamati-b Na 2 ¹⁴ ine i (05/20	evactoumabi Mivalua HCC 3º lian n 201	toolumati +rahoaartimb lion ronal cell carcinom coz/2021)	
									Immunoth	erapy-targete	d therapies	
								Aveilanativ L* line versil rat (96/20	noltinili I caratemento 19)	Atex 8	RAF V600+ advanced (07/2020)	+vemuratenib melanoma
	2015		2016	201	7	2018			2019	202	0	2021
- Wzieniste				Pernbroßissmab+ pernetresed 1** line NSCLC (05/2017)	Permi pometro 1 ^{ne}	brollaamste+ «ed+carti oplati Inw NSCLC 38/2018)	Ateroi sumab+ bevaciosmab +pacittaxei+ carbopletin * NSCLC (12/2018)	Atexolizumab- chemotherapy ES-SCIC (03/2019)	Pembrolizamab schemotherapy HNSCC Chemo (D6/2019) dun Stage (32	ipilimuma platinum c Jarline M radiation Recum radumata (05 10 MSCLC 1/2020)	renivolumabe hemotherapy letastatic or Pombro lett NSCLC chimnel (2020) Becament o unple mega (11/1	ttumáte+ cherapy i metaetattic ctéri terusat rozog
Estimental care	r. Imr				Im	munothe	rapy-Cher	notherapy				
Hoodistaliuler Long partia Mie tatikiönne Lodorsen all to Reset annie Haar & Next o Gabrossophig	Lorinitta SLovitta andar Jual Anythia (GL)	(canoor		,	Chemoradiation → darvalumab Stage W BSCLC (02/2018)	Penthrolizur +chimorada NSCLC (10/2018	nob tion I	Atexplanmah- mah-pacifizarei Motantaris tripi magnifar fonas (03/2019)	Atenskuunab- nab-paoltaautj carbopitin NSCIC (12/2015)	Darvaturats- chemotherapy energies SCL2 [03/2020]	Chemittherapy eintamance avenumat electrature (av orbitalia) earcheomy (36,/2020)	Pembrukumid s chemetherapy Metastatic (E) cancer (3/2023)

Toxicities of ICI

Blockade of inhibitory checkpoint molecules results in a broad range of immune-related adverse events (irAEs), resulting from impaired selftolerance which may involve almost every organ.

Sangro et al. Journal of Hepatology Volume 72 Issue 2 Pages 320-341 2020 72320-341

Liver Injury from ICI

Class	Agont	Pof	Indication	Incidence of hepatoxicity (all	Incidence of ≥ grade 3
Class	Agent	nei.	Indication Melanoma Squamous cell NSCLC Non-squamous NSCLC	grades) % (no. of patients)	hepatoxicity % (no. of patients)
		Hodi et al ^[71] , 2018	Melanoma	0.3 (1/311)	0 (0/311)
		Weber et al ^[72] , 2009	Melanoma	15.5 (9/58)	10.3 (6/58)
	Inilimumah (standard dose) 3 mg/kg	Hodi et $a^{[2]}$ 2010	Melanoma	3.8 (5/131)	0 (0/131)
	ipilinunab (standard dose) 5 mg/kg		Melanoma	2.1 (8/380) Ipilimumab with gp100	1.1 (4/380) ipilimumab with gp100
CILA-4		Wolchok et al ^[73] , 2010	Melanoma	26.4% (19/72)	0 (0/72)
		Robert et al ^[74] , 2011	Melanoma	29.1 (72/247)	20.6 (51/247)
	lpilimumab (high dose) 10 mg/kg	Wolchok et al ^[73] , 2010	Melanoma	70.4 (50/71)	15.5 (11/71)
	Tremelimumab	Ribas et al ^[75] , 2013	Melanoma	0.6 (2/325)	0.6 (2/325)
		Hodi et al ^[71] , 2018	Melanoma	0.3 (1/313)	0.3 (1/313)
	Nivolumab	Weber et al ^[76] , 2017	Melanoma	1.9 (11/576)	0.7 (4/576)
		Brahmer et al ^[77] , 2015	Squamous cell NSCLC	1.5 (2/131)	0 (0/131)
Anti-BD-1		Borghaei et al ^[78] , 2015	Non-squamous NSCLC	3.1 (9/287)	0 (0/287)
Anti-FD-1		Robert et al ^[79] , 2014	Melanoma	1.1 (1/89)	1.1 (1/89)
	Pembrolizumah	Robert et al ^[79] , 2014	Melanoma	0 (0/84)	0 (0/84)
	Fembronzamab	Eggermont et al ^[80] , 2018	Melanoma	1.8 (9/509)	1.4 (7/509)
	Cemiplimab	Migden et al ^[81] , 2018	Cutaneous Squamous-Cell Carcinoma	8.5 (5/59)	0 (0/59)
	Atezolizumab	Jotte et al ^[82] , 2020	Squamous NSCLC	17.4 (58/334)	5.4 (18/334)
Anti-PD-L1	Atezolizumab + Bevacizumab	Finn et al ^[3] , 2020	HCC	33.4 (110/329)	10.6 (35/329)
	Avelumab	D'Angelo et al ^[83] , 2020	Metastatic Merkel cell carcinoma	1.1 (1/88)	1.1 (1/88)
	Durvalumab	Garassino et al ^[84] , 2018	Advanced NSCLC	0.2 (1/444)	0.2 (1/444)
		Hodi et al ^[71] , 2018	Melanoma	3.2 (10/313)	2.6 (8/313)
Combination Thorapy	Inilimumah u Nivolumah	Postow et al ^[85] , 2015	Melanoma	22.3 (21/94)	10.6 (10/94)
combination merapy		Larkin et al ^[86] , 2015	Melanoma	17.6 (55/313)	8.3 (26/313)
		Wolchok et al ^[73] , 2010	Melanoma	20.8 (11/53)	11.3 (6/53)

CPIs-induced liver injury was found to improve spontaneously in 33–50% without corticosteroids, and the rate of patients who were treated responded to steroids in 33–100% (mean 72%).

Remash D, Prince DS, McKenzie C, Strasser SI, Kao S, Liu K. Immune checkpoint inhibitor-related hepatotoxicity: A review. World J Gastroenterol 2021; 27(32): 5376-5391

Management of ICI Hepatitis

Grade 1 (AST or ALT >ULN to 3× ULN and/or total bilirubin >ULN to 1.5× ULN): Continue with close monitoring (except for some neurologic, hematologic, and cardiac toxicities)

Grade 2 (AST or ALT >3 to <5× ULN and/or total bilirubin >1.5 to <3× ULN): Hold and consider resume when symptoms and/or laboratory values revert to grade 1 or less. Corticosteroids (initial dose of 0.5 to 1 mg/kg/d of prednisone or equivalent) and tapered over at least a month.

Grade 3 (symptomatic dysfunction, fibrosis found on a liver biopsy, compensated cirrhosis, reactivation of chronic hepatitis, AST or ALT 5-20× ULN, and/or total bilirubin 3-10× ULN): Hold and initiate high-dose corticosteroids (prednisone 1 to 2 mg/kg/d or methylprednisolone IV 1 to 2 mg/kg/d). Corticosteroids should be tapered over the course of at least 4 to 6 weeks. If symptoms do not improve with 48 to 72 hours of high-dose corticosteroid, mycophenolate mofetil may be offered.

Grade 4 (decompensated liver function, AST OR ALT >20× ULN, and/or total bilirubin >10× ULN): Permanent discontinuation of ICPis is recommended with grade 4 toxicities, with the exception of endocrinopathies that have been controlled by hormone replacement.

LiverTox (http://livertox.nih.gov/)

Symptoms of Cirrhosis

Elliot B. Tapper MD Director, University of Michigan Cirrhosis Program @ebtapper

Symptom control is high quality care

Quality of life is often poor

Hepatology 2019;69:1676-1685

Patients expect us to address their symptoms

TABLE 3. Patient Ratings of Patient-Reported Outcomes

Patient-Reported Item	Not Important (%)	Somewhat Important (%)	Very/Extremel Important (%)
Fluid in the legs (edema)	8.9	14.1	76.9
Fluid in the belly (ascites)	3.8	5.1	91.1
Confusion (encephalopathy)	1.3	10.1	88.6
Concentration/memory	6.4	16.7	76.9
Itching (pruritus)	5.2	12.9	81.8
Muscle cramps	12.9	36.4	50.7
Falls	12.8	17.9	69.2
Medication side effects	8.9	17.9	73.1
Depression	7.6	21.7	70.5
Stigma of having liver disease	5.1	14.1	80.8
Ability to drive	10.1	22.8	67.1
Burden on family	35.1	5.2	59.8
Ability to avoid alcohol	17.1	18.4	64.4

Hepatology. 2019;69(4):1787-1797

During the past month, how would you rate your sleep quality overall?

(a 5-point Likert from Very Good to Very Bad)

Advanced

Basics: Quiet No TV Reading Caffeine

zul **Medications (hydroxyzine,** melatonin) Am J Gastroenterol. 2007 Apr;102(4):744-53. **Meditation** Clinical and Translational Gastroenterology (2017) 8, e108; actulose Metab Brain Dis (2017) 32:595-605

ISSN 0002-9270 doi: 10.11111j.1572-0241.2006.01028.x

Histamine H1 Blocker Hydroxyzine Improves Sleep in Patients With Cirrhosis and Minimal Hepatic Encephalopathy: A Randomized Controlled Pilot Trial

Laurent Spahr, M.D.,1 Alessandra Coeytaux, M.D.,2 Emiliano Giostra, M.D.,1 Antoine Hadengue, M.D.,1 and Jean-Marie Annoni, M.D.2

¹Gastroenterology and Hepatology, University Hospital, Geneva, Switzerland; and ²Neurology, University Hospital, Geneva, Switzerland

Hydroxyzine

Figure 3. Evolution of sleep (percent changes) as assessed subjectively using a visual analog scale, in hydroxyzine- and placebotreated patients. Values are expressed as median and interquartile range (25–75th percentiles).

Figure 4. Evolution of sleep behavior (percent changes) as measured using wrist actigraphy during 4 days and overnight periods prior to and during the last 4 days of treatment, in hydroxyzine- and placebo-treated patients. Values are expressed as median and interquartile range (25–75th percentiles). Nighttime activity recorded by the Actiwatch relates to fragmented sleep and frequent awakenings. Sleep efficiency is the total time spent in bed for sleeping purposes divided by the nighttime activity, multiplied by 100.

ORIGINAL ARTICLE

Low-dose melatonin for sleep disturbances in early-stage cirrhosis: A randomized, placebo-controlled, cross-over trial

*Faculty of Medicine, University of Kelaniya, [†]University Medical Unit, Colombo North Teaching Hospital, Ragama and [‡]Faculty of Medical Sciences, University of Sri Jayawardenapura, Nugegoda, Sri Lanka

 Table 3
 Preadministration and postadministration scores of Pittsburgh Sleep Quality Index (PSQI) and Epworth sleepiness scale (ESS) and Short

 Form Health Survey (SF 36) among melatonin and placebo groups

		Melatonin mean (SD)	Placebo mean (SD)			
Indicator	Preadministration score	Postadministration score	P value	Preadministration score	Postadministration score	P value
PSQI score	12.6 (3.1)	9.6 (3.1)	< 0.01	11.4 (2.9)	7 (3.4)	<0.01
ESS score	11.8 (4.7)	9.4 (4.9)	< 0.01	11.7 (4.5)	8.7 (4.0)	0.01
SF1	59.1 (24.3)	57.2 (26)	0.45	65.7 (20.6)	68.8 (20.0)	< 0.01
SF2	14.9 (24.6)	17.6 (31.1)	0.50	19.1 (32.6)	28.3 (37)	0.08
SF3	27.9 (41.2)	32.4 (42.7)	0.28	43.1 (41.5)	53.3 (41.6)	0.16
SF4	49.3 (20.0)	53 (17.1)	0.11	61.8 (14.3)	63.7 (14.9)	0.08
SF5	57.6 (14.9)	59.8 (13.9)	0.21	65.3 (13.9)	67.9 (14.3)	0.14
SF6	60.1 (22)	61.4 (21.7)	0.47	65.4 (18.0)	67.9 (16.3)	0.12
SF7	50.6 (28.5)	52.6 (24.4)	0.36	57.5 (22.2)	59.6 (21.7)	0.54
SF8	32.2 (16.9)	35.5 (14.7)	0.05	42.5 (14.0)	43.5 (13.8)	0.89
SF9	49.3 (29.7)	48 (26.6)	0.42	57.1 (26.3)	57.5 (27.2)	0.92

Melatonin

or... Placebo?!

Maybe caring to ask is enough?

PLoS One 2010;5:e15591 BMJ open. 2017 Jun 1;7(6):e015516

Meditation

Table 1 Change in Patient Questionnaires

Table 2 Change in Caregiver Questionnaires

Patients	Pre-group	Post-group	P-value	Caregivers	Pre-group	Post-group	P-value
MELD score	12.9 ± 5.7	12.5 ± 5.5	0.48	Zarit Burden Interview-SF	13.0 + 9.0	9.8+6.9	0.04
Beck Depression	19.0 ± 10.6	15.6 ± 8.2	0.012	Perceived Caregiver Burden	72.1 ± 29.9	63.0 ± 14.5	0.05
% with depression	20 (100%)	9 (45%)	0.0001	Beck Depression Inventory	9.1 ± 7.8	5.9 ± 6.0	0.03
Beck Anxiety Inventory	11.9 ± 10.1	12.3 ± 10.4	0.51	Beck Anxiety Inventory	5.5 ± 5.2	5.2 ± 7.1	0.80
Total SIP	25.0 ± 13.2	17.7 ± 14.0	0.005	Total SIP	6.5 ± 9.7	6.1 ± 9.1	0.52
Psychosocial SIP	25.1 ± 15.9	17.3 ± 13.2	0.01	Psychosocial SIP	6.4 ± 9.6	8.0 ± 12.6	0.51
Physical SIP	18.5 ± 17.4	13.1 ± 12.5	0.001	Physical SIP	4.9 ± 9.8	4.7 ± 9.4	0.82
Pittsburgh Sleep Quality	7.2 ± 3.7	5.5 ± 3.7	< 0.001	Pittsburgh Sleep Quality Index	7.2 ± 3.7	5.5 ± 3.7	< 0.001
Epworth Sleepiness	7.1 ± 3.5	5.7 ±4.4	0.13	Epworth Sleepiness Scale	7.2±3.4	5.7 ±4.4	0.11
PHES score median	-7(-10 to - 4)	- 6 (-8 to - 3)	0.42	SIP, Sickness Impact Profile. Data is presented as mean + s.d. u	nless stated oth	erwise. A hiah s	core on all
Covert HE by PHES (%)	55%	50%	0.75	these values indicates worse function	oning.	17 CANAGARANA ANG ANG M ANANA	

Clinical and Translational Gastroenterology (2017) 8, e108;

Lactulose improves sleep quality

Advanced

Basics: Normalize electrolytes, hydration

Frequency as main problem: Taurine 3g daily, Baclofen 5-10mg

Severity/duration as main problem: Pickle Juice – 1 sip/tbsp at cramp onset

PICCLES trial

80 patients Pickle juice vs tap water

Reduced cramp severity No effect on frequency, sleep, or QOL

The American Journal of Gastroenterology: June 2022 - Volume 117 - Issue 6 - p 895-901

How much of the time have you been troubled by itching during the last two weeks?

Advanced

Basics: Showers Moisture Hydroxyzine

I am not sure how effective these are for people with non-biliary cirrhosis

Fenofibrate (100-145mg)

Have you had any sexual activity in the past few weeks? How satisfied were you with your sexual function during the past few weeks?

"Advanced"

'Basics' Alcohol Depression Smoking

I respect that this may be uncomfortable

HEPATOLOGY 2019;69:2683-2695

	Estriol Group	PLACEBO GROUP
VARIABLE	(N = 36)	(N = 24)
Positive vaginal cultures — no. (%)		
Pretreatment		
Lactobacilli	0	0
Enterobacteriaceae	24 (67)	16 (67)
After 1 mo of treatment		
Lactobacilli	22 (61)	0†
Enterobacteriaceae	11 (31)	15 (63)‡
After 8 mo of treatment		
Lactobacilli	21 (58)	0†
Enterobacteriaceae	10 (28)	17 (71)‡
Vaginal pH		
Pretreatment	5.5±0.7	5.8±1.2
After 1 mo of treatment	3.8±0.8	6.2±1.2†
After 8 mo of treatment	3.6±1.0	6.1±2.0†

Table 3. Alterations in Vaginal Flora and pH in the Two Groups.*

*Only women who had cultures at the one- and eight-month visits were included in the analysis. Plus-minus values are means \pm SE.

†P<0.001 for the comparison between groups.

[‡]P<0.005 for the comparison between groups.

Figure 1. Kaplan-Meier Analysis Showing the Cumulative Proportions of Women Remaining Free of Urinary Tract Infections in the Estriol and Placebo Groups (P<0.001 by the Log-Rank Test).

Low T Sarcopenia Anemia

Sex life

Testosterone therapy increases muscle mass in men with cirrhosis and low testosterone: A randomised controlled trial

Marie Sinclair^{1,2,*}, Mathis Grossmann^{1,3}, Rudolf Hoermann¹, Peter W. Angus^{1,2,†}, Paul J. Gow^{1,2,†}

ble 3. Median changes of parameters from baseline to end-of-trial in study completers (n = 47), which represents per protocol analysis.

	All	Testosterone	Placebo	<i>p</i> value
APLM (kg), n = 45	0.59 [-0.65;2.13]	+1.69 [0.81;2.49]	-0.05 [-0.89;0.61]	0.014
Lean mass (kg), n = 45	0.54 [-1.83;4.06]	+3.43 [0.54;5.34]	-0.77 [-2.07;0.89]	0.017
Fat mass (kg), n = 45	1.05 [-3.04;4.06]	-2.42 [-5.27;1.56]	1.62 [0.97;6.26]	0.008
Bone mass (kg), n = 45	0.02 [-0.10;0.11]	+0.03 [-0.05;0.13]	-0.01 [-0.14;0.06]	0.092
Lumbar T score, n = 45	0.00 [-0.20;0.30]	0.10 [-0.10;0.40]	-0.10 [-0.30;0.22]	0.105
NOF T score, n = 45	-0.10 [-0.30;0.20]	0.10 [-0.10;0.30]	-0.20 [-0.41;0.10]	0.006
Hb (g/L), n = 47	2.00 [-3.00;16.0]	5.00 [1.00;17.0]	0.00 [-5.25;11.2]	0.055
HbA1c (%), n = 42	0.00 [-0.40;0.20]	-0.25 [-0.68;0.10]	0.00 [-0.30;0.30]	0.130

sults displayed as median [95% confidence interval]. APLM, appendicular lean mass; NOF, neck of femur; Hb, haemoglobin; HbA1c, percentage glycosylated haemoglobin.

Considerations: No HCC, No prostate Ca, counsel re: risk of CVA/MI

Journal of Hepatology 2016 vol. 65 906-913

Subclinical, covert HE is associated with: poor QOL, poor sleep, falls, frailty

Make patient-centered decisions

Identifying and treating HE improves QOL

How Should You Take Lactulose?

- Straight from the spoon
- In water with or without ice
- Mix in hot or cold drink of your choosing
 - It may settle at the bottom, mix thoroughly

Pain Mismanagement in Cirrhosis control for patients with cirrhosis

e Burden and Impact of Pain and Pain

Advanced

Basics: Acetaminophen

Classify the pain type

Suggest non-pharmacologic interventions

Neuropathy: Lidocaine, Capsaicin TCA / Duloxetine

Pharmacologic/ Interventional

Hepatology. 2023 Jan 1;77(1):290-304.

Thank you!

Ask your patients!

Track symptoms!

Do something about it!

Liver Transplant (101): The Non-Specialist

MOISES ILAN NEVAH, MD

Banner University Medical Center – Phoenix Transplant Institute Associate Professor of Medicine – University of Arizona College of Medicine

Disclosures

No Financial Disclosures

Outline

1. Cirrhosis and Portal hypertension

2. MELD score: application

3. Liver Transplant evaluation

True or False

1. Do all patients with portal hypertension have cirrhosis?

True or False

1. Do all patients with portal hypertension have cirrhosis?

True or False

1. Do all patients with portal hypertension have cirrhosis?

2. Do all patient with cirrhosis have portal hypertension?

True or False

1. Do all patients with portal hypertension have cirrhosis?

2. Do all patient with cirrhosis have portal hypertension?

Portal Hypertension

Portal Hypertension: Intrahepatic

Portal Hypertension: Portosystemic Gradient

- Difference between the pressure in the portal system and systemic system
- Portosystemic Gradient = Hepatic Venous Pressure Gradient
- HVPG = WHVP FHVP
- Portal HTN = HVPG \geq 6mmHg

Cirrhosis: Definitions

• End stage of any chronic liver disease

 Characterized histologically by regenerative nodules surrounded by fibrous tissue

- Clinically there are two types of cirrhosis:
 - Compensated
 - Decompensated

Natural History of Chronic Liver Disease

Liver Disease Burden in the United States

- ~18 % increase in Liver transplants in the past 5 years
- 10,660 Liver transplants 2023
 - Increase in 11% vs 2022
 - Increase utilization living donors
 - Higher risk donors
 - DCD
 - New Perfusion technologies
 - Donors > 50
- Landscape of Liver Disease

• End Stage Liver disease

• Hepatic Neoplasms

• Acute Liver Failure

• Metabolic disorders

Decompensated Liver disease

- Synthetic dysfunction
- Ascites / Hydrothorax
- Variceal hemorrhage
- Hepatic encephalopathy PVCLD
- Hepatorenal syndrome

ACLF

• End Stage Liver disease

• Hepatic Neoplasms

• Acute Liver Failure

• Metabolic disorders

Hepatocellular Carcinoma Cholangiocarcinoma Polycystic Liver Disease Metastatic Malignancies NET Colorectal Cancer

• End Stage Liver disease

• Hepatic Neoplasms

• Acute Liver Failure

• Metabolic disorders

- Wilson Disease
- DILI
- AIH
- Idiopathic
- Acute Alcohol Associated Hepatitis

• End Stage Liver disease

• Hepatic Neoplasms

• Acute Liver Failure

• Metabolic disorders

Acute Alcohol Associated Hepatitis

- 6 Month Sobriety rule
- Program dependent
- Young
- Female
- Post Pandemic
- Specific Criteria

Acute Alcohol Associated Hepatitis

Early Liver Transplantation for Severe Alcoholic Hepatitis

Philippe Mathurin, M.D., Ph.D., Christophe Moreno, M.D., Ph.D., Didier Samuel, M.D., Ph.D., Jérôme Dumortier, M.D., Ph.D., Julia Salleron, M.S., François Durand, M.D., Ph.D., Hélène Castel, M.D., Alain Duhamel, M.D., Ph.D., Georges-Philippe Pageaux, M.D., Ph.D., Vincent Leroy, M.D., Ph.D., Sébastien Dharancy, M.D., Ph.D., Alexandre Louvet, M.D., Ph.D., <u>et al.</u>

SPECIAL ARTICLE

Meeting Report: The Dallas Consensus Conference on Liver Transplantation for Alcohol Associated Hepatitis

(b) Asrani, Sumeet K.^{*1,†}; Trotter, James^{1,†}; Lake, Jack²; Ahmed, Aijaz³; Bonagura, Anthony⁴; Cameron, Andrew⁵; DiMartini, Andrea⁶; Gonzalez, Stevan⁷; (b) Im, Gene⁸; Martin, Paul⁹; Mathurin, Philippe¹⁰; Mellinger, Jessica¹¹; Rice, John P.¹²; (b) Shah, Vijay H.¹³; (b) Terrault, Norah¹⁴; Wall, Anji¹; (b) Winder, Scott¹¹; Klintmalm, Goran¹

Author Information _☉

Liver Transplantation 26(1):p 127-140, January 2020. | DOI: 10.1002/lt.25681

TABLE 4. Listing Criteria and Program Components for LT for AH

€ 🔍

	Primary criteria	Secondary considerations
H assessment	First presentation with decompensated AH	No prior liver-related hospitalization
	Absence of severe medical comorbidities	 Assessment of frailty debility, and multiorgan failure No other contraindications to UT
	Nonresponse to medical therapy	 Contraindications: disease severity, multiorgan failure, infection, renal failure, and low likelihood for response Consider nonresponders using Lille score >0.45 or worsening of liver function by days 4 or 7 Monitor for signs of recovery after listing
AUD assessment	Establish acceptable risk of relapse as assessed by a multidisci- plinary psychosocial team composed of a social worker and at least 1 addiction specialist	 Not intubated Consider independent team of specialists in addiction, social workers, and mental health providers Ideally first member of LT team to evaluate Consider independent mechanisms for regional or local review
	Direct assessment of patient possible by an addiction specialist	 Not intubated or floridly encephalopathic
	A maximum of 1 prior failed attempt at rehabilitation	
	Lack of other active substance use/dependency or active untreated psychiatric disorder	
	Acceptance of diagnosis/insight	
	Commitment of patient/family to sobriefy and formalized agree- ment to adhere to lifelong total alcohol abstinence	Establish contract and participation in addiction rehabilitation following transplant
	Presence of close, supportive family members or caregivers	
Committee deci- sion making	Consensus of paramedical and medical staff	Consider blinded voting in committee deliberations Consider absolute consensus
Program components	Transparency in selection process	 Creation of internal policies/procedures consistently followed by the transplant program Willingness to share, publish, or have policies/procedures reviewed by outside agents Documentation of transplant program experiences with AH in CONSORT flow diagram, including those assessed for eligibility, those excluded and reasons for the exclusion, treatment responders, transplant outcomes, and elements of selection criteria Enhanced reproducibility by use of standard definitions and common data elements Consistent and timely structured data reporting
	Independent psychosocial assessment	 Mental health professional with addiction background/training Mental health professional familiar with transplant process
	Structured post-LT follow-up mechanism in place	 Documentation of AUD management plan before and after LT Dedicated addiction specialist/mental health professional for longitudinal management Commitment for regular monitoring for alcohol use, PEth, and urinary ethyl glucuronide Structured monitoring program for posttransplant alcohol relapse and in the monitoring program for posttransplant alcohol relapse
		the patient in recovery

Acute Alcohol Associated Hepatitis

Favorable Factors

- 1. Insight into addiction
- 2. Strong social support
- 3. Substitute activities
- 4. Perception of negative consequences of alcohol

Unfavorable Factors

- 1. Prior failed EtOH rehabilitation
- 2. Use despite negative consequences
- 3. Family history of alcoholism
- 4. History of alcohol dependence
- 5. Active psychiatric disease

• End Stage Liver disease

• Hepatic Neoplasms

• Acute Liver Failure

• Metabolic disorders

Urea Cycle Disorder Porphyria Familial Amyloid polyneuropathy Primary Hyperoxaluria Phenylketonuria

How Do We Determine Severity of Disease?

- Clinically
- Biochemically CPT Score

MELD

Child-Turcotte-Pugh Classification for Severity of Cirrhosis					
	Points*				
Clinical and Lab Criteria	1	2	3		
Encephalopathy	None	Grade 1 or 2	Grade 3 or 4		
Ascites	None	Mild to moderate (diuretic responsive)	Severe (diuretic refractory)		
Bilirubin (mg/dL)	< 2	2-3	>3		
Albumin (g/dL)	> 3.5	2.8-3.5	<2.8		
Prothrombin time Seconds prolonged or International normalized ratio	<4 <1.7	4-6 1.7-2.3	>6 >2.3		
*Child-Turcotte-Pugh Class obtained by adding score for each parameter (total points)					
Class A = 5 to 6 points					
Class B = 7 to 9 points					
Class C = 10 to 15 points					

MELD: Model for End-Stage Liver Disease

MELD = 3.8*loge(serum bilirubin [mg/dL]) + 11.2*loge(INR) + 9.6*loge(serum creatinine [mg/dL]) + 6.4

Max creatinine level = 4mg/dL (also assigned to HD)

- Initial use: Predict 3-month mortality after TIPS placement
- MELD uses laboratory values:
 - 1. Serum bilirubin
 - 2. INR
 - 3. Serum creatinine
- Range: 6 40
- MELD predicted survival of waitlisted patients
 - 2002 UNOS adopted as main allocation tool (priority on WL)

MELD-Na

- Na better predictive power for mortality than the MELD score alone.
 - Increased by 5% / mmol decrease (125 – 140 mmol/L)
- 2016 → UNOS updated allocation system to include sodium
- Limitations
 - Diuretics
 - IVF

Result:

Please fill out required fields.

MELD 3.0

- Females compared to males
 - Decreased odds of LT within 3 years of listing
 - WL Increased mortality and increased removal
- New Variable
 - Albumin
 - Gender
- Update on the coefficient of the variable
- Introduces interaction
 - Bilirubin and sodium
 - Albumin and creatinine
- Creatinine capped at 3.0 mg/dL

MELD Limitations

- Sodium
 - Diuretics and volume status
- Creatinine
 - Racial and gender disparities
 - Not true reflection of GFR
- INR
 - Varies according to thromboplastin reagent
 - Int'l sensitivity Index (ISI)
 - Vitamin K antagonist Warfarin
- Bilirubin
 - Hepatitis C vs MASH

The Challenge of Liver Transplantation

- Organ shortage = Demand and Supply
 - Minimize waitlist mortality
 - Excellent post transplant survival
- Refinement of <u>allocation</u> policies
 - Allocation \rightarrow Recipient
- Refinement of **distribution** policies
 - Distribution \rightarrow Donors

Goals of Liver Transplantation

• Provide maximum benefit to patients with liver failure without no additional medical/surgical alternative for survival

• Likely prolongs life at least 5 years

• Restores patient to normal or near normal functional status

Liver Transplant Evaluation: Time to Refer

- EARLY REFERRAL IS BEST
 - Before life-threatening complication
- Cirrhosis
 - At first sign of decompensation
 - MELD > 10
 - MELD \geq 15 recommend listing
 - MELD > 35 Increased mortality
- Hepatocellular carcinoma

Hospitalized patient

- Acute Liver Failure (fulminant) Encephalopathy Coagulopathy No prior history of liver disease
- Acute on Chronic Liver failure Hepatorenal Syndrome Hepatopulmonary Syndrome Portopulmonary Hypertension

Patient Selection Criteria for Liver Transplant

- All LT candidates require evaluation for comorbidities
 - CV, respiratory, renal
 - Infections (fungal and parasitic)
 - Nutrition / Frailty
 - Anatomy
 - Neoplastic lesions
 - Social assessment
 - Psychiatric and addiction

- There is no formal age limit
 - Patients >65 years of age need a multidisciplinary evaluation
- LT has been performed successfully in patients >70 years
 - Increased risk of CV complications

Questions for Successful Liver Transplantation

• Can patient survive surgery/postoperative period?

 Can patient comply/adhere to complex medical regimen after transplantation?

• Comorbid conditions that can compromise patient/graft survival and make transplantation futile?

Absolute Contraindications for Liver Transplant

- Irreversible brain damage or neurological deficit
- Advanced/Incurable cardiopulmonary or other systemic disease
- Multi-system failure not correctable by liver transplantation
- Active extrahepatic malignancy (not skin cancer)
- Active infections
- Active substance abuse and non-adherence
- Psychosocial concerns / Lack of adequate social support
- Anatomic abnormalities
- Frailty / Malnutrition

Relative Contraindications to Liver Transplant

• Age

• Prior Treated Extrahepatic Malignancies

• BMI

• Recent infection with Multidrug Resistant Organism

Liver Transplant Selection Committee

- Review of history and physical
- Review of psychosocial interview
- Review of laboratory studies

- Determination of medical need & psychosocial clearance
- May be accepted, declined, or deferred

Liver Transplant Selection Outcomes

Delisting Criteria

- Patient transplanted
- Recovery of Native Liver Function
- Patient would not derive survival benefit
 - Transplant risks outweigh benefits
- Substance abuse
- Loss of social support

Liver Allocation

- All candidates sorted in the following order
 - Status/MELD
 - Blood type
 - Identical \rightarrow Compatible \rightarrow Incompatible
 - Distance from the Donor Hospital
 - Time
 - Wait time at current MELD
 - Time since submission on initial approved MELD exception
 - Total waiting time

Liver Transplant Evaluation: What Can My Patient Do?

- Social Support
- Get involved in chemical dependency treatment program if indicated and DOCUMENT attendance
- Lose weight (BMI<35 recommended) Control of comorbid conditions
- Quit smoking NOW
- Avoid narcotic use if possible
- Methadone should NOT be a barrier to transplantation
- Improved nutrition

Summary

- 1. Cirrhosis and portal hypertension are different
- 2. MELD score is the most objective tool for severity of liver disease
- 3. Not all MELD score are the same
- 4. Refer patients with cirrhosis early
- 5. Liver transplantation is a process

Panel Discussion

Moderator: Stephen Harrison, MD, FACP, FAASLD

Raj Vuppalanchi, MD

Elliot Tapper, MD

Moises Nevah Rubin, MD

Break & Exhibits

10:05 AM - 10:20 AM

Steatotic Liver Disease (SLD) New Nomenclature: Implications and Implementation

Meena B. Bansal, MD Professor of Medicine System Chief, Division of Liver Diseases Director, MASLD/MASH Center of Excellence

> Desert Liver Conference March 2, 2024

The Mount Sinai School of Medicine

Disclosures

- ► Grant Support: NIH, CDC/NIOSH, Pfizer, The Kinetix Group, Histoindex
- Consultant/Advisory Board: Madrigal, Theratechnologies, NOVO Nordisk, Intercept, The Kinetix Group, Fibronostics, Merck, GSK

Agenda

- ► Rationale for change
- ► Reaching Consensus
- ► Implications
- ► Implementation

The evolution of NAFLD nomenclature

Gastroenterology 2020;158:1999-2014

- Calling 'what it is v. what its not'
- Stigma from alcohol in name
- Positive diagnosis
- Recognize close relationship with metabolic disorders

MAFLD: A Consensus-Driven Proposed Nomenclature for Metabolic Associated Fatty Liver Disease

Mohammed Esiam Arun J. SanyaF

Henning Grønbæk, Department of Hepatology and Gastroenterology, Aarhus

Helena Cortez-Pinto, Clínica Universitária de Gastrenterologia, Laboratório

Jacob George, Storr Liver Centre, Westmead Institute for Medical Research,

Jiangao Fan, Center for Fatty Liver, Department of Gastroenterology, Xin

Luca Valenti, Department of Pathophysiology and Transplantation,

Università degli Studi di Milano, and Translational Medicine, Department of

Transfusion Medicine and Hematology, Fondazione IRCCS Ca' Granda

Manal Abdelmalek, Department of Medicine, Duke University, Durham, North

Manuel Romero-Gomez, Hospital Universitario Virgen del Rocio de Sevilla,

Instituto de Biomedicina de Sevilla, Biomedical Research Networking Center

Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine,

de Nutrição, Faculdade de Medicina, Universidade de Lisboa, Portugal.

Westmead Hospital and University of Sydney, NSW, Australia

. . . .

University Hospital, Aarhus, Denmark,

Ospedale Maggiore Policlinico, Milano, Italy.

in Hepatic and Digestive Diseases, Sevilla, Spain.

Shanohai, China,

Carolina

Jacob George¹, on behalf of the International Consensus Panel

Mary Rinella, Department of Gastroenterology, Northwestern University Feinberg School of Medicine, Chicago, Illinois.

Marco Arrese, Departamento de Gastroenterología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.

Mohammed Eslam, Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, NSW, Australia.

Pierre Bedossa, Department of Pathology, Physiology and Imaging, Beaujon Hospital Paris Diderot University, Paris, France.

Philip N. Newsome, National Institute for Health Research Biomedical Research Centre at University Hospitals Birmingham NHS Foundation Trust and the University of Birmingham, UK: Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, UK; Liver Unit, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK.

Quentin M. Anstee, Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom; Newcastle NIHR Biomedical Research Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom,

Rajiv Jalan, Liver Failure Group, Institute for Liver and Digestive Health. University College London, Royal Free Campus, London, United Kingdom.

Ramon Bataller, Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania.

Rohit Loomba, Division of Epidemiology, Department of Family Medicine and Public Health, University of California at San Diego, La Jolla, California.

Silvia Sookolan, Department of Clinical and Molecular Hepatology, National Scientific and Technical Research Council (CONICET), University of Buenos Aires, Institute of Medical Research (IDIM), Cludad Autónoma de Buenos Aires, Argentina.

Shiv K. Sarin, Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India.

Stephen Harrison, Radcliffe Department of Medicine, University of Oxford. Oxford, UK.

Takumi Kawaguchi, Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan.

Vincent Wai-Sun Wong, Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong,

Vlad Ratziu, Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Höpital Pitié Salpétrière, Institute of Cardiometabolism and Nutrition (ICAN). Paris, France.

Yusuf Yilmaz, Department of Gastroenterology, School of Medicine, Marmara University, Istanbul, Turkey; Institute of Gastroenterology, Marmara University, Istanbul, Turkey.

Zobair Younossi, Center for Liver Diseases, Department of Medicine, Inova Fairfax Hospital, Falls Church, Virginia.

The evolution of NAFLD nomenclature

Hepatology 2021; Ratziu et al. J Hepatology 2021

¹Sorbonne Université, Höpital Pitié-Salpétrière, Institute for Cardiometabolism and Nutrition (ICAN) and INSERM UMRS 1138 CRC, Paris, France: ²Northwestern University Feinberg School of Medicine, Chicago, IL, USA; ³Department of Gastroenterology and Hepatology. Amsterdam University Medical Center, Amsterdam, the Netherlands; ⁴NAFLD Research Center, University of California at San Diego, La Jolla, CA, USA; ⁴Translational & Clinical Research Institute, Faculty of Medical Sciences, Nervastic University, Newcastle upon Tyne, UK; ⁴Pinnacle Clinical Research, San Antonio, TX, USA; ⁴Department of Gastroenterology and Hepatology, Antwerp University Hospital and University of Antwerp, Edegem, Belgium; ⁴Division of Gastroenterology, Virginia Commonwealth University, Richmond, VA, USA; ⁴National Institute for Health Research Biomedical Research Centre at University Hospitals Birmingham NHS Foundation Trust and the University of Birmingham,

UK; 10 Inova Medicine, Inova Health System, Falls Church, VA

Global NAFLD Nomenclature involvement

Renaming NAFLD: Key Questions to Address

What is the importance of steatohepatitis in disease definition and endpoints?

How should the role of alcohol be accounted for (or not)?

How might name change impact disease awareness, clinical trials and regulatory approval pathways?

Can an alternate name reduce heterogeneity and allow for future advances ?

Summary of the DELPHI Process

Rinella, Mary E; Lazarus, Jeffrey V; Ratziu, Vlad; Francque, Sven M; Sanyal, Arun J; Kanwal, Fasiha; Romero, Diana; et al. A multisociety Delphi consensus statement on new fatty liver disease nomenclature. Hepatology ():10.1097/HEP.00000000000520, June 24, 2023. | DOI: 10.1097/HEP.00000000000520

Areas of strong consensus (>80%)

Role of Steatohepatitis

- The distinction between steatosis and steatohepatitis has prognostic implications
- NASH resolution should remain an important classifier of disease activity (93%)

Disease classification

- Those with steatosis without Met RF should be characterized separately (81%)
- The term 'metabolic dysfunction' highlights a central aspect of disease pathophysiology (86%)

Role of alcohol

- 30-60 g/day of EtOH alters natural history of disease (95%), may alter response to therapeutics (90%)
- 30-60 g/day in combo with Met RF should be an independent category (83%)
- >60g/d + Met RF = ALD with Met dysfunction (86%)
- >60g/day (irrespective of Met RF) = ALD
 (82%)

13 new members who were content experts from hepatology, endocrinology, pediatrics and patient advocacy representatives

Consensus Nomenclature

*Weekly intake 140-350g female, 210-420g male (average daily 20-50g female, 30-60g male)

**e.g. Lysosomal Acid Lipase Deficiency (LALD), Wilson disease, hypobetalipoproteinemia, inborn errors of metabolism

***e.g. Hepatitis C virus (HCV), malnutrition, celiac disease, human immunodeficiency virus (HIV)

Kanwal, Tetri, Loomba, Rinella. Metabolic dysfunction-associated steatotic liver disease (MASLD) in context: Implications for the AASLD clinical practice guidance on nonalcoholic fatty liver disease. Hepatology 2023, *in press;*

Adapted from Rinella, Lazarus, Ratziu...Newsome, on behalf of the NAFLD Nomenclature consensus group. A multi-society Delphi consensus statement on new fatty liver disease nomenclature *Hepatology* 2023; Rinella et al. Journal of Hepatology 2023; Rinella et al. Annals of Hepatology 2023

Definition

- ► Affirmative set of diagnostic criteria for MASLD.
- ► Near universal agreement to err on side of being inclusive
- Minimize patient heterogeneity and be adaptable to future insights
- ► Simple, readily available and easily measurable parameters
- The diagnostic criteria were also selected to align with cardiometabolic risk factors already well established and validated in other metabolic health disorders
- The set of criteria for adults was then submitted to a subcommittee of five pediatric hepatologists who adapted them for the pediatric population

Power in Numbers

Overlap between NAFLD and MASLD

- Impact interpretation of previously published data?
- Impact on clinical trials?
- Impact on qualification of biomarkers?

Near complete overlap in biomarker population

Metabolic risk factor (MRF)	Entire databa	se (N=2187)	Subcohort with all five MRF available (N=1369)	
	Missing data* %, (n)	Criteria fulfilled [#] , % (n)	Criteria fulfilled [#] , % (n)	
BMI ≥25 kg/m ² OR waist circumference >94 cm (M) 80 cm (F)	2.2 (49)	96.7 (2 067)	98.4 (1347)	
Fasting serum glucose ≥5.6 mmol/l OR HbA1c ≥5.7% OR type 2 diabetes OR treatment for type 2 diabetes	18.9 (413)	87.0 (1 544)	84.8 (1161)	
Blood pressure ≥130/85 mm Hg OR specific antihypertensive drug treatment	24.5 (536)	84.7 (1 399)	82.5 (1130)	
Plasma triglycerides ≥1.70 mmol/l OR lipid Iowering treatment	15.3 (335)	74.8 (1 386)	77.8 (1065)	
Plasma HDL-cholesterol ≤1.0 mmol/ (M) and ≤1.3 mmol/I (F) OR lipid lowering treatment	15.5 (340)	81.0 (1 496)	84.8 (1161)	
No MRF present		1.6 (35 [§])	0.1 (1)	
At least one MRF present		98.4 (2 152)	99.9 (1 368)	
At least two MRFs present		89.8 (1 963)	97.7 (1 338)	
At least three MRFs present		77.3 (1 690)	92.1 (1 261)	
At least four MRFs present		58.3 (1 275)	79.3 (1 085)	
All five MRFs present		37.1 (812)	59.3 (812)	

- Data acquired for NAFLD are valid for MASLD
- Nomenclature change will not impact biomarker development

Ratziu et al. Confirmatory biomarker diagnostic studies are not needed when transitioning from NAFLD to MASLD. J Hep 2023

Excellent Overlap between NAFLD and MASLD

Korean Primary Care Population

Lee C. et al. Prevalence, Distribution and Hepatic Fibrosis Burden of the Different Subtypes of Steatotic Liver Disease in Primary Care Settings Hepatology 2023; Lee, Dodge and Terrault, National prevalence estimates for steatotic liver disease and subclassifications using consensus nomenclature. Hepatology 2023

NIMBLE stage 1 circulating workstream study cohort derived from NASH CRN

		Stage 0 N= 222	Stage 1 N=114	Stage 2 N= 262	Stage 3 N= 277	Stage 4 N=198
Age (yrs)	Mean (SD)	47.8 (12.2)	48.1 (13.8)	51.7 (11.5)	54.4 (11.2)	56.2 (9.8)
Males	n (%)	99 (44.6%)	52 (45.6%)	102 (38.9%)	91 (32.9%)	60 (30.3%)
Caucasian	n (%)	158 (71.2%)	68 (59.6%)	199 (76.2%)	217 (78.9%)	169 (86.2%)
T2DM	n (%)	45 (20.3%)	41 (36.0%)	113 (43.1%)	162 (58.5%)	129 (65.2%)
BMI (kg/m2)	Mean (SD)	32.8 (6.6)	33.3 (6.1)	34.5 (6.3)	36.1 (6.6)	36.4 (7.3)
HbA1C (%)	Mean (SD)	5.8 (1.1)	6.0 (1.2)	6.4 (1.1)	6.7 (1.2)	6.7 (1.4)
AST (IU/l)	Mean (SD)	27.8 (13.3)	31.9 (17.7)	50.3 (29.3)	58.3 (39.8)	51.9 (28.9)
ALT (IU/l) Alk phos (IU/l)	Mean (SD) Mean (SD)	38.5 (25.4)	45.0 (34.6)	65.5 (43.1)	68.1 (47.8)	49.1 (34.5)
		86.6 (30.5)	80.6 (28.2)	87.0 (28.0)	93.0 (33.2)	114.5 (53.2)
Bilirubin (mg/dl)	Mean (SD)	0.5 (0.3)	0.6 (0.5)	0.5 (0.3)	0.5 (0.4)	0.8 (0.8)
INR	Mean (SD)	1.0 (0.1)	1.0 (0.2)	1.0 (0.1)	1.1 (0.1)	2.8 (4.3)
LDL-Cholesterol (mg/dl)	Mean (SD)	117.5 (36.5)	105.9 (36.6)	112.0 (39.2)	106.1 (38.1)	100.7 (35.3)
NASH	n (%)	27 (12.2%)	91 (79.8%)	262 (100%)	277 (100%)	178 (89.9%)
NAS	Mean (SD)	2.5 (0.6)	2.5 (0.6)	4.8 (1.5)	5.2 (1.6)	4.2 (1.6)

7/1073 (<1%) were reclassified as cryptogenic steatotic liver disease

NAFLD & MASLD Comparable

Swedish Cohort

Table 1. Baseline characteristics and outcomes of patients with NAFLD and MASLD, respectively.

Parameter	NAFLD (n = 1,333)	MASLD (n = 1,329)
Age (years)	52 (40-61)	52 (40-61)
Sex (male)	780 (58.5)	777 (58.5)
Body mass index (kg/m ²)	29.3 (26.8-32.3)	29.3 (36.8-32.3)
FIB-4 score	1.04 (0.72-1.62)	1.04 (0.72-1.62)
Fibrosis stage ¹		
FO	223 (16.7)	223 (16.7)
F1	373 (27.9)	370 (27.8)
F2	211 (15.8)	211 (15.9)
F3	100 (7.5)	99 (7.5)
F4	55 (4.1)	55 (4.1)
NASH ¹	545 (40.9)	544 (40.9)
Cardiometabolic criteria		
Body mass index ≥25 kg/m ²	1,179 (88.5)	1,179 (88.7)
Insulin resistance*	809 (60.7)	809 (60.8)
Hypertension**	1,114 (83.6)	1,114 (83.8)
High triglycerides***	969 (72.7)	969 (72.1)
Dyslipidemia****	783 (58.7)	783 (58.7)
Outcomes		
Liver-related outcome	143 (10.7)	142 (10.7)
Overall mortality	402 (30.2)	401 (30.2)

***LITMUS**

<2% of the Registry cohort would be 'lost' based on absence of any metabolic syndrome criteria as defined in the current document

[1] Hagstrom et al. 99% of patients with NAFLD meet MASLD criteria and natural history is therefore identical. J Hepatol 2023.

MetALD

- Addresses the role of stigma
- 'Elevates' mutual importance of BOTH harmful alcohol use AND cardiometabolic risk as drivers of liver disease

Opportunities for research

- Inclusion into clinical trials
- Personalized understanding of drivers of fibrosis progression rates

Refine definition working with ALD partners

Awareness and implementation

- Medical school curricula
- UptoDate

- Use of nomenclature across journals
- Editorials highlighting change

• Reinforcement of new terminology

Increasing use in scientific publications

Publiced® MASLD Advanced Create alert Create	e RSS	X Search User Guide		
Save Email Send	to Sorted by: Bu Publed® MY NCBI FILTERS	est match Display options 🛠 MASLD Advanced Create alert Create RS Save Email Send to 52 results	September 13, 2023 X Search User Guide User Guide MASLD Advanced Create alert Create a	January 14, 2024 × Search User Guide
CW, Tiniakos D, Abstract Free full text Frue full text Full text CW, Tiniakos D, Ullota-Rivas M, J Hepatol. 2023 print. Full text PMID: 3736478 The name chose (MASLD), Then July 2023	RESULTS BY YEAR	Did you mean aasld (931 result: A multi-society Delph 1 nomenclature. Cite Rinella ME, Lazarus JV, Ra Anstee QM, Arab JP, Arres Share GE, Chowdhury A, Cortez- S, Guy CD, Harrison SA, Ki R, Morgan TR, Powell E, Ro CW, Tiniakos D, Valenti L, Villota-Rivas M, Newsome	Save Email Send to MY NCBI FILTERS 298 results Pie 298 results Pie Did you mean aasld Metabolic Dysfunction 1 Metabolic Dysfunction 1<	Sort by: Best match Display options (954 results)? Display options Display options (954 results)? Display options Displa
Global adoption

Caros associados da ALEH

Depois de guase 3 anos a trabalhar com as Associações irmãs AASLD, EASL, outras Associações Nacionais, Associações de defesa dos doentes , tenho a honra de enviar a você este documento oficial onde a nova Nomenclatura NAFLD é estabelecida para MAS

HINKI

ALEH

CONTROL OF THE OWNER WITH THE

Esta nova nomenclatura é enviada a você excelente trabalho realizado pelo grupo de pelo comitê gestor da nomenclatura de língua

Barris and a sure and a sure de the set of the

15.0000

Session-5: Healthy Liver - Healthy Lives (INASL- EASL- AASLD Symposium on MASLD (NAFLD)

NUEVA NOMENCLATURA ALEH

INDEDTIDES INVESTIGACIÓN Y COUCACIÓN FUNDACIÓN HARIS NOTICIAS

Constate Contra Maria

Ampres Social Binigate Sector

DORTACTO PATROCINIGIALEN

publication.	12:35-12:40 PM	Jeff Lazarus Ajay Duseja		
Read New	12:40-12:55 PM	Fatty liver disease landscape opportunities, challenges, and future directions	Arun	Senyal
	12:55-1:10 PM	A global research priority agenda to advance public health responses to fatty liver disease	Jeff	Sessio
bout Steatotic Liver Disease (SLD)	1:10-1:25 PM	India: the opportunity to be a global leader in fatty liver disease	Ajay	9.40-9
LO and its members are proud to have been one of the leading multinational liver societie	1:25-1:40 PM 15 min	Discussion		9.55-10

AI

Dig Deeper!

AAS finalized the new nomenclature for liver disease, which was announced in June 2023.

Time: Topic		Sp	saker:	Chairpersons:		Presidento ALEH	astro Narro	
2:35-12:40 PM	Introduction about the Program Jeff Ajay 55 PM Fatty liver disease landscape opportunities, challenges, and future directions Arun		Lazarus Duseja			Asociadon Launoamericana para el Estudio del Higildo		
2:40-12:55 PM 15 min			Sanyal	Norah Terrault	Estimados minimbros de	ALEH		
2:55-1:10 PM	A global research priority agenda to advance public health responses to fatty		Session-2: INA Liv	SL-EASL Symposium on Metabol er Disease (MASLD/NAFLD)	ummanas AASLD, EASL, otras Asociaciones Naciona ingo el honor de hacenies Regar este decumento of 15.0.			
	liver disease		Times	Topic	Speaker:	Chairpersons	States -	
1:10-1:25 PM	India: the opportunity to be a global leader in fatty liver disease		9.40-9.55 AM	Biomarker strategies for significant and advanced liver disease at the	Quentin Anstee		rtugués, idiomas de nuestra región. Agraducco el gr	
1:25-1:40 PM	PM Discussion			primary and secondary health care level		SP Singh		
15 min			9:55-10:10 AM 15 min	Digital Israith interventions in the management of MASLD (NAFLD)	Jeff Lazorus	S P Misra Sandeep Nijhawan		
			10 10-10:25 AM	Drugs for advanced fibrosis and cirrhosis related to MASH (NASH)	Arun Sanyal	Srijaya Sreesh KN Panda		
			10:25-10:40 AM	Discussion				

Webpage translated into Spanish, French, and Portuguese

EASL Studio - 4 October (Live at 18:00 CET)

Season 5, Episode 5 - JHEP Live: the new nomenclature for SLD: a multidisciplinary evaluation and approach

In this actoride, the discussants will examine the following questions, raised after a Journal of Hepshology's nomenclature article.

+ Is the introduction of metabolie risk facture (MRP) for the definition of MASLD justified?

- What are the main issues reparcing the measurement and timesholds for MRFs?

+ Is the introduction of the MetALD category cleically justified?

. Is it recessery to wanny about MW's in a patient dataking increased or excessive amounts of alcohol and if yes, how about these be accounted for in disease of systems?

Faculty: Vied Flatziu (Moderator), Qiulio Merchenini (Faculty), Nancy Fleau (Faculty), Roberto Vettor (Faculty)

New NAFLD Nomenclature

AMERICAN ASSOCIATION FOR THE STUDY OF LIVER DISEASES

No more NAFLDI Steatotic Liver Disease is the overarching term; NAFLD is now MASLD.

About Steatotic Liver Disease (SLD) Steatotic Liver Disease

On This Page

Dig Deeper!

Classifications

Norab Terrault, MD, MPH. FAASLD, Discusses the New Nomenclature

Introducing MASLD and MetALD

Norah Terrault, MD, MPH, FAASLD and Mary Rinella, MD, FAASLD Explain New Nomenclature

Mazen Noureddin, MD, MHSC, on the New NAFLD Nomenclature

Society Endorsements Mazen Noureddin, MD, MHSC

Implementation Plan Actions

Technical Implementation

- Understand what needs to be changed for EMR, EPIC, etc. and begin outreach to make those changes.
- Engage CMS to adjust coding and adopt quality metrics focused on screening high-risk populations for significant fibrosis in MASLD/MASH

Community Adoption

- Identify and develop clinical resources needed to help clinicians use and explain the new nomenclature to patients.
- Develop materials for institutions to help educate administrators.
- Draft papers for publication/articles for media explaining the nomenclature change and identifying what remains the same despite the nomenclature change.

Met-ALD Term Refinement

• Convene working group of MASLD and ALD experts to examine Met-ALD definition and make revisions/recommendations based on expert opinion.

DE&I Elevation

- Partner with minority health groups to develop patient and practice materials.
- Conduct seminars/speak at DE&I/minority conferences to engage community on MASLD.
- Establish presence (i.e., Booth participation) in adjacent specialty conferences and develop materials for dissemination.

Impact of New Nomenclature in a nutshell

Understanding disease and stigma

- If stigmatizing language can be avoided, it should
- Affirmative diagnosis reflecting disease underpinnings

Why SLD is helpful?

- Doesn't change the nature of the disease, clinical studies, or progress on NITs
- More inclusive construct that is expandable
- Sets the stage for more research and subclassifications

Progress on NITs and treatment

- No impact on natural history as NAFLD and MASLD fully overlap – 99%
- NASH=MASH
- Full overlap with biomarker and clinical trial populations

Introducing MetALD

- Previously ignored, MetALD patients will benefit from enhanced research and care pathways, ensuring no patient is left behind
- Opportunities for therapies targeting both diseases (e.g. cravings, genetic approaches)

Meena.bansal@mssm.edu

All You Need to Know on Diagnosing MASLD: From Risk Stratification to Treatment Monitoring

Mazen Noureddin, MD, MHSc

Professor of Medicine Department of Medicine Sherrie & Alan Conover Center for Liver Disease & Transplantation Houston Methodist Research Institute <u>Houston Methodist Hospital</u>

Director Houston Research Institute CSO Summit Clinical Research Houston, Texas

Disclosures

- Principal Investigator for a Drug Study: Allergan, Akero, BMS, Gilead, Galectin, Genfit, GSK, Conatus, Corcept, Enanta, Madrigal, Novartis, Novo Nordisk, Shire, Takeda, Terns, Viking and Zydus
- Advisory Board: : Altimmune, BI, Cytodyn, Corcept, 89BIO, GSK, Madrigal, Merck, Novo Nordisk, Northsea therapeutics, Terns and Takeda
- Stockholder: Rivus Pharma, Cytodyn, and ChronWell
- Associate Editor: Clinical Gastroenterology and Hepatology
- Federal funding: NIH/NIDDK (CO-I, Site PI)

Vino

49-year-old American who is of Italian and Mexican Descent

Vino presents to GI clinic referred by his PCP for assessment of his liver

- Medical history: T2DM x 15 yrs, dyslipidemia x 2 yrs
- Family history: Mother had diabetes and father had HTN
- Social History:
 - He doesn't exercise, but walks the dog daily
 - Works as a malpractice attorney
 - Drinks 1 beer a day when he goes home
- Prior Exam was normal except for central obesity (BMI of 33 kg/m2)
- Symptoms: Has some right upper quadrant discomfort
- Medications: Metformin 500 mg po twice a day and fish oil

Todays' Laboratory Values							
ALT	69 U/L						
AST	77 U/L						
Total Bilirubin	0.8 mg/dL						
Albumin	4.0 g/dL						
Platelets	175,000/μL						
LDL	130 mg/dL						
HDL	39 mg/dL						
Triglyceride	240 mg/dL						
Hgb A1C	6.9						

Prevalence of NAFLD in Patients with Diabetes

- Overall global prevalence of NASH among T2DM patients is 37.3%
- 17% of biopsied diabetics have advanced fibrosis (fibrosis \geq F3)

Global prevalence of NAFLD among T2DM patients 55.5% (95% confidence interval: 47.3-63.7)

Younossi ZM, et al. J Hepatol. 2019;71(4):793-801.

Modeling The Epidemic Of Nonalcoholic Steatohepatitis Demonstrates An Exponential Increase In Burden Of Disease

NASH Projected to Increase in US Population

■F0 ■F1 ■F2 ■F3 ■F4

NAFLD, nonalcoholic fatty liver disease; NASH, nonalcoholic steatohepatitis. Adapted from Estes C, et al. *Hepatology*. 2018;67:123-133.

NAFLD/MASLD Rules: Natural History

NASH/MASH Rules: Baseline Fibrosis Stage Predicted Mortality and Time To Development of Severe Liver Disease

Taylor RS, et al. Gastroenterol. 2020;158:1611-25.

The NASH CRN Prospective Data

The NEW ENGLAND JOURNAL of MEDICINE

Non-Invasive Tests (NITs): Context of Use

1. Metabolic risk factors: central obesity, high triglycerides, low HDL cholesterol, hypertension, prediabetes, or insulin resistance. 2. For patients age >65, use FIB-4 <2.0 as the lower cutoff. Higher cutoff does not change. 3. Other NITs derived from routine laboratories can be used instead of FIB-4. 4. Many online FIB-4 calculators are available such as https://www.mdcalc.com/fibrosis-4-fib-4-index-liver-fibrosis. 5. Ultrasound acceptable if vibration-controlled transient elastography (VCTE, FibroScan^{*}) is unavailable. Consider referral to hepatiologist for patients with hepatic steatosis on ultrasound who are indeterminate or high risk based on FIB-4. 6. LSM values are for VCTE (FibroScan^{*}). Other techniques such as bidimensional shear wave elastography or point shear wave elastography can also be use used to measure LSM. Proprietary commercially available blood NITs may be considered for patients considered indeterminate or high risk based on FIB-4 or APRI, or where LSM unavailable. 7. Eddowes et al. uses 8.2 and 12.1 kPa as cutoffs for LSM using VCTE. Valdiation of simple (rounded) cutoffs reported by Papatheodoridi et al. Kanwal F et al. Gastroenterol. 2021 Adapted from.

AASLD 2023 Guidance

Rinella et al; Hepatology 2023

Cirrhosis Prevention in NAFLD

Cusi et al; Endo Practice 2022

EASL 2021

- Primary care providers are essential in identifying patients with NAFLD and referring them to specialists
- Studies have shown that PCPs screen asymptomatic individuals less often than specialists do

Primary care/diabetology clinic

FIB-4 for Predicting Presence of Advanced (F3/4) Fibrosis

Angulo et al. Hepatology. 2007; Sterling et al. Hepatology. 2006; McPherson et al. Gut. 2010

<u>Vino's FIB4 score: 2.60</u> The referral was appropriate What is Next?

In the GI/Hepatology Office

1. Metabolic risk factors: central obesity, high triglycerides, low HDL cholesterol, hypertension, prediabetes, or insulin resistance. 2. For patients age >65, use FIB-4 <2.0 as the lower cutoff. Higher cutoff does not change. 3. Other NITs derived from routine laboratories can be used instead of FIB-4. 4. Many online FIB-4 calculators are available such as <u>https://www.mdcalc.com/fibrosis-4-fib-4-index-liver-fibrosis</u>, 5. Ultrasound acceptable if vibration-controlled transient elastography (VCTE, FibroScan¹) is unavailable. Consider referral to hepatologist for patients with hepatic steatosis on ultrasound who are indeterminate or high risk based on FIB-4. 6. LSM values are for VCTE (FibroScan¹). Other techniques such as bidimensional shear wave elastography or point shear wave elastography can also be use used to measure LSM. Proprietary commercially available blood NITs may be considered for patients considered indeterminate or high risk based on FIB-4 or APRI, or where LSM unavailable. 7. Eddowes et al. uses Adapted from:

AASLD 2023

Clinical Suspicion for Fatty Liver Disease

Rinella et al; Hepatology 2023

Imaging Techniques - VCTE

Vibration-controlled transient elastography (VCTE)

Fibrosis	Steatosis
Liver stiffness	САР
 Obtained through a VCTE measurement Correlated to extent of fibrosis 	 Quantification of ultrasound attenuation obtained in VCTE measurement Correlated to liver steatosis

VCTE: CAP Assessment for Steatosis

Sensitivity Priority Based Steatosis Assessment

383 NAFLD Subjects With CAP & Paired Biopsy

	Steatosis Stage	Sensitivity Threshold (dB/m)	Sensitivity	Specificity	PPV	NPV	
	≥ \$1	274	0.90	0.60	0.99	0.47	
	<u>></u> \$2	290	0.90	0.44	0.74	0.71	
Vino 316 dB/m -	 S3	302	0.90	0.38	0.45	0.87	

The above threshold values are from the cited peer review publication. Clinical usage of threshold values are determined by the provider based on their preferred threshold value reference.

Eddowes et al; Gastroenterology (2019) https://www.gastrojournal.org/article/S0016-5085(19)30105-2/pdf

VCTE: Youden's Index Based Fibrosis Assessment

384 NAFLD Subjects With VCTE & Paired Biopsy

	Fibrosis Stage	Youden's Threshold (kPa)	AUROC	Sensitivity	Specificity	PPV	NPV
	F0-F1 vs <u>></u> F2	8.2	0.77	0.71	0.70	0.78	0.61
Vino 9.8 kPa	F0-F2 vs <u>></u> F3	9.7	0.80	0.71	0.75	0.63	0.81
	F0-F3 vs F4	13.6	0.89	0.85	0.79	0.29	0.98

The above threshold values are from the cited peer review publication. Clinical usage of threshold values are determined by the provider based on their preferred threshold value reference.

Eddowes et al; Gastroenterology (2019) https://www.gastrojournal.org/article/S0016-5085(19)30105-2/pdf

Serum Tests – ELF

Primary care, endocrinologists, gastroenterologists and obesity specialists should screen for NAFLD with advanced fibrosis Step 1: Identify patients at risk 2 or more metabolic Steatosis on any imaging modality or Type 2 diabetes risk factors¹ elevated aminotransferases Step 2: History & lab tests: Excessive alcohol intake, CBC, liver function tests Step 3: Non-invasive testing (NIT) for fibrosis^{2,3} (FIB-4 is a calculated value⁴ based on age, ASLT, ALT & platelet count) FIB-4 <1.3 FIB-4 ≥1.3 to 2.67 FIB-4 >2.67 Indeterminate Risk Step 1: Liver stiffness measurement (LSM) LSM <8 kPa LSM >12 kPa LSM 8 to 12 kPa Indeterminate Risk Low Risk Refer to hepatologist for liver **High Risk** Repeat NIT in 2–3 years biopsy or MR elastography or unless clinical circumstances Refer to hepatologist monitoring with re-eval of change risk in 2–3 years

1. Metabolic risk factors: central obesity, high triglycerides, low HDL cholesterol, hypertension, prediabetes, or insulin resistance. 2. For patients age >65, use FIB-4 <2.0 as the lower cutoff. Higher cutoff does not change. 3. Other NITs derived from routine laboratories can be used instead of FIB-4. 4. Many online FIB-4 calculators are available such as https://www.mdcalc.com/fibrosis-4-fib-4-index-liver-fibrosis. 5. Ultrasound acceptable if vibration-controlled transient elastography (VCTE, FibroScan^{*}) is unavailable. Consider referral to hepatologist for patients with hepatic steatosis on ultrasound who are indeterminate or high risk based on FIB-4. 6. LSM values are for VCTE (FibroScan^{*}). Other techniques such as bidimensional shear wave elastography or point shear wave elastography can also be use used to measure LSM. Proprietary commercially available blood NITs may be considered for patients considered indeterminate or high risk based on FIB-4 or APRI, or where LSM unavailable. 7. Eddowes et al. uses 8.2 and 12.1 kPa as cutoffs for LSM using VCTE. Valdiation of simple (rounded) cutoffs reported by Papatheodoridi et al. Kanwal F et al. Gastroenterol. 2021 Adapted from.

Advanced Steps

Liver Biopsy is still an option

BUT!!!!!!

AASLD: Noninvasive parameters for advanced fibrosis and cirrhosis

of simple sie lande in en mile en

decompensation^(8, 9)

								iagiiusis u		liui				
								Rule-in	Rule-out					
Serum	FIB-4	FIB-4	● Dete ↓ ≥ 2.67	Deteo ≥ 2.67	 ≥ 2.67	ction of a <1.3	of advar L.3 • •	No added cost ⁽¹⁻³⁾ Not accurate in age < 35 years and lower rule-out	CPR	FIB-4	≥3.48	< 1.67	•	90% specificity cut-point for ruling-in and 90% sensitivity for ruling-out cirrhosis, respectively ^(6, 7)
					threshold among high-risk individuals who have high pre-test probability	Serum	ELF	≥11.3	<7.7	•	ELF ≥ 11.3 is associated with increased risk of hepatic decompensation among			
Serum	ELF	≥9.8	<7.7	•	Blood test sent to a reference laboratory ⁽⁴⁾ Cost	Imaging	VCTE	≥ 20 kPa	< 8 kPa	•	patients with cirrhosis ⁽⁴⁾ LSM by VCTE \geq 20 kPa is associated with cirrhosis but			
Imaging	VCTE	<u>></u> 12 kPa	< 8 kPa	•	Point of care ⁽⁵⁾						for ruling out cirrhosis optimal cut-point is < 8			
Imaging	MRE	<u>></u> 3.63	<2.55	•	MRE LSM ≥3.63 kPa						kPa ⁽⁵⁾			
		kPa	kPa		(associated with advanced fibrosis, AUROC of 0.93) ⁽⁶⁾	Imaging	MRE	≥5 kPa	< 3 kPa	•	LSM by MRE ≥ 5 kPa has a very good (approaches 95%)			
			-								specificity for diagnosis of cirrhosis and is also associated with increased risk of incident hepatic			

Imaging Techniques - MRE

Modified phase-contrast pulse sequence to visualize rapidly propagating mechanical shear waves (~60 Hz)

Loomba et al. Hepatology. 2014; Patel et al. Ther Adv Gastroenterol.. 2016 Han, Noureddin. Liver Int 2020

action Map MRI Fat Fr

MRI Fat Fraction Map

Vino's MRI-PDFF: 28

Noureddin, Hepatology 2013 Loomba Hepatology 2015

MRI Fat Fraction Average: 28% MRI Fat Fraction Average: 22%

MRI-PDF

Sequential Testing is Key!!!!

- Liver biopsy is historically required to diagnose liver fibrosis and NASH
- Can be useful when non-invasive tests give indeterminate or conflicting results

 However, sequential utilization of NITs can lead to better detection of advanced fibrosis and cirrhosis, especially when patients fall into the indeterminate zone

AASLD: Noninvasive parameters for 'at risk' NASH/MASH

		Identifica	ation of 'at risk' I	NASH
Combined	FAST	<u>></u> 0.67	<0.35	• ≤0.35 (sensitivity 90%)
				 ≥ 0.67 (specificity 90%)
				• In validation cohorts, the PPV of FAST
				ranged between 0.33 and 0.81. ⁽¹⁻²⁾
Combined	MEFIB	FIB-4 ≥ 1.6 plus	FIB-4 < 1.6 plus	 Sequential approach identifies patients with at least stage 2 fibrosis
		MRE ≥ 3.3 kPa	MRE < 3.3 kPa	with > 90% PPV. ⁽³⁾
	MAST	≥0.242	≤0.165	0.242 (specificity 90%), 0.165 (sensitivity 90%) ⁽⁴⁾
	cT1	≥ 875 msec	< 825 msec	 Requires further validation as data is derived from one study⁽⁴⁾

Newsome et al. Lancet Gastro Hep 2020¹; Woreta et al PLoSONE 2022²; Jung et al. Gut 2021³; Noureddin M et al. J Hepatol 2022⁴ Andersson et al. CGH 2022⁵

Rinella et al; Hepatology 2023

FAST: For NASH/MASH with NAS \geq 4 and \geq F2

HighProbability of

At Risk NASH

Newsome et al; Lancet Gastro Hep 2020 Noureddin N et al; Hepatology 2020

Indeterminate

Low Probability of

At Risk NASH

MAST score: MRI-Based Score to Identify Patients with NASH/MASH and Significant Fibrosis

identifying patients at higher risk of Fibro-NASH.

ON THE HORIZON

Boyle et al; J Hep Reports 2019 Daniel SJ; Hepatology 2019

The serum identification of At-Risk MASH: The Metabolomics-Advanced steatohepatitis fibrosis score (MASEF)

- Metabolomics serumbased test: 12 lipids, BMI, AST and ALT
- Derivation: 790
 Validation: 565

Noureddin et al Hepatology 2023

The serum identification of At-Risk MASH: The Metabolomics-Advanced steatohepatitis fibrosis score (MASEF)

Noureddin et al Hepatology 2023

NIS-2 score

Harrison et al; J Hep 2023

How do I monitor response?

ALT

Factors Associated With Histologic Response in Adult Patients With Nonalcoholic Steatohepatitis in the FLINT trial

Loomba et al; Gastroenterology 2019

Longitudinal Assessment of NITs from the REGENERATE study

Patients with \geq -stage fibrosis improvement had the greatest improvement in NITs, while patients with \geq 1-stage fibrosis worsening typically showed no NIT improvement.

AUROC values for each of these were suggestive of only weak association

NIT improvements observed in REGENERATE are associated with fibrosis improvement at Month 18, individual NIT changes are not likely to be effective univariate clinical predictors of fibrosis improvement by Month 18.

Rinella et al; J Hep 2022

Rinella et al; J Hep 2022

Changes in FAST score during semaglutide treatment

BASELINE TO WEEK 72 – SUBSET ANALYSIS (N=161)

香港中文大學醫學院 Faculty of Medicine The Chinese University of Hong Kong

AST, FibroScan CAP and FibroScan LSM are the individual components of the FAST score. Data are for patients with FAST scores at baseline during the on-treatment period. Line plots are observed mean (±SEM). AST, aspartate aminotransferase; CAP, controlled attenuation parameter; FAST, FibroScan aspartate aminotransferase; LSM, liver stiffness measurement; OD, once-daily; SEM, standard error of the mean.

Wong VW et al. EASL 2021 (OS-1556)

PDFF-Changes in Recent Trials

Harrison et al. Lancet 2019

NITs with Data Linked to Histology/Treatment Response

Monitoring Response to Therapeutic Interventions

Blood	Imaging	Combination		
 ALT Pro-C3 FIB-4 ELF 	 cT1 <u>VCTE</u> MRI-PDFF <u>MRE</u> 	 FAST <u>MAST</u> (Non-histology but through MASTRO-NAFLD) 		

Is a change in 1 NIT enough to monitor therapeutic response ?

The use of combined NITs increases the diagnostic accuracy of at risk NASH

Is that true for therapeutic response monitoring?

If yes, how many and which ones are needed?

Summary

- We have new algorithms to guide referral from PCP to Hepatology/Gastro (Amazing progress)
- These algorithms might change over time
- Combination of serum biomarkers and imaging appear to be the way to go
- NITs predict outcomes

Thank you

"Learn from yesterday, live for today, hope for tomorrow. The important thing is not to stop questioning." -- *Albert Einstein*

♥@noureddinmd

Management of MASH with New Drugs: The Euture is Bright

Visiting Professor of Hepatology Radcliffe Department of Medicine, University of Oxford Chairman and Founder, Pinnacle Clinical Research Chairman and Co-Founder, Summit Clinical Research

Global Epidemiology of MASH & Type 2 Diabetes

MASLD and MASH Prevalence in Different Groups

Prevalence of MASH Among US Middle-Aged Cohorts

Disease Burden of MASH – Diabetes Epidemics

MASH prevalence could grow along with the rapid increase in diabetes and obesity

Age-adjusted, county-level prevalence of diagnosed diabetes among adults aged 20 years or older, United States, 2004, 2012, and 2019

Centers for Disease Control and Prevention. National Diabetes Statistics Report website

Incidence of MASH cirrhosis in the US

1990: 178,430 cases 2017: 367,780 cases (106% increase)

In Absence of FDA-Approved Therapies

Lifestyle Recommendations for Treating MASH

Caloric intake reduction

≥30% or ~750-1,000 kcal/day improved insulin resistance and hepatic steatosis Limit consumption of fructose-enriched beverages

Weight loss of 3% to 5% can improve steatosis, but 6% to 10% is needed to improve MASH/fibrosis

Exercise alone may reduce steatosis, but effect on other histologic features unknown

No heavy alcohol consumption Insufficient data to guide recommendations regarding nonheavy alcohol consumption Drink ≥ 2 cups of caffeinated

coffee daily

Chalasani N et al. Hepatology. 2018;67(1):328-357 Diehl AM, Day C. New Engl J Med. 2017; 377:2063-72.

2024 /ER CONFERENCE PHOENIX, ARIZONA

Evidence from PIVENS Trial: Vitamin E & Pioglitazone

Endpoint Mean change in score	Placebo N=72	Vitamin E N=80	Pioglitazone N=70
Steatosis	-0.1	-0.7*	-0.8*
Inflammation	-0.2	-0.6*	-0.7*
Ballooning	-0.2	-0.5*	-0.4*
NAS	-0.5	-1.9*	-1.9*
Fibrosis	-0.1	-0.3	-0.4
Resolution of NASH, % of responders	21%	36%*	46%*

* statistically significant versus placebo

Vitamin E

Cross-sectional study from the National Health and Nutrition Examination Survey (2017 – 2020)

Diagnosis bases on CAP

6,112 participants

Valuable	Non-adjuste	P-value	
Supplementary vitamin E		ref	
Yes		0.5250(0.4030,0.6840)	<0.0001
Total vitamin E as continuous	1	0.9778(0.9652,0.9905)	0.0011
Total vitamin E as quartiles			
Q1		ref	
Q2		0.9994(0.7790,1.2822)	0.9961
03	i	1 1775(0 8995 1 5413)	0 2268
Q4	+	0.8052(0.6362, 1.0193)	0.0706
p for trend	1		0.1925
Sensitivity analyse			
Supplementary vitamin E			
No		ref	
Yes		0.5143(0.3772,0.7013)	< 0.0001
Total vitamin E as continuous		0.9807(0.9676,0.9939)	0.0053
Total vitamin E as quartiles			
Q1		ref	
Q2		1.0982(0.8324, 1.4490)	0.4976
Q3		→ 1.2488(0.9221,1.6913)	0.1461
Q4	-	0.8679(0.6706, 1.1232)	0.2727
p for trend			0.3962

2024 DESERT LIVER CONFERENCE PHOENIX, ARIZONA

Qi et al. Sci Rep. 2024 Jan 31;14(1):2592.

Regulatory Framework for Drug Approval

PHOENIX, ARIZONA

NASH). 2018

of medicinal products for chronic non-infectious diseases (PBC, PSC,

Full Approval

Based on major adverse liver outcomes

FDA. Draft Guidance. Noncirrhotic Nonalcoholic Steatohepatitis With Liver Fibrosis: Developing Drugs for Treatment Guidance for Industry. December 2018.

Drugs in Phase 3

Role of THR-β in Hepatic Lipid Metabolism

PHOENIX, ARIZONA

Ritter MJ, et al. Hepatology. 2020;72:742-752. Saponaro F, et al. Front Med (Lausanne). 2020;7:331. Sinha RA, et al. Nat Rev Endocrinol. 2018;14:259-269.

Taub R, et al. Atherosclerosis. 2013;230:373-380. Taub R, et al. (NASH-TAG Conference: 04-06 Jan 2018; Park City, UT. Harrison SA, et al. Lancet. 2019;394:2012-2024.
Role of THR-β in Hepatic Lipid Metabolism

Ritter MJ, et al. Hepatology. 2020;72:742-752. Saponaro F, et al. Front Med (Lausanne). 2020;7:331. Sinha RA, et al. Nat Rev Endocrinol. 2018;14:259-269.

Taub R, et al. Atherosclerosis. 2013;230:373-380. Taub R, et al. (NASH-TAG Conference: 04-06 Jan 2018; Park City, UT. Harrison SA, et al. Lancet. 2019;394:2012-2024.

Safety and tolerability as measured by incidence of AEs over 52 weeks in >1200 patients

MAESTRO NAFLD-OLE

52-week extension to MAESTRO-NAFLD-1 in >700 patients: Safety & tolerability by incidence of AEs over 52 weeks

MAESTRO NASH

Subpart H:

NASH resolution or fibrosis improvement on serial liver biopsy at Week 52 Outcomes

PHOENIX, ARIZONA

(54 months – ongoing)

MAESTRO NASH OUTCOMES

Event-driven clinical outcome to decompensated cirrhosis in patients with wellcompensated NASH cirrhosis A total of > 1500 patients at the top dose of 100 mg and > 2000 patients on at least 80 mg to support accelerated approval

Harrison S, et al. N Engl J Med. 2024 Feb 8;390(6):497-509

Harrison S, et al. N Engl J Med. 2024 Feb 8;390(6):497-509

Lanifibranor – Mechanism of Action

Newsome PN et al. N Engl J Med 2021;384:1113-1124

Additional Benefits

Lipid and glycemic control

Absolute Change from Baseline

	Placebo	Lani 800 mg	Lani 1200 mg
	N=74	N=77	N=77
TG, mmol/L	0.06	-0.49	-0.44
	(-0.12 to 0.23)	(-0.66 to -0.31)	(-0.61 to -0.27)
HOMA-IR	-1.47	-5.79	-5.46
	(-2.59 to -0.35)	(-6.92 to -4.65)	(-6.60 to -4.32)
HbA1c	0.07 (-0.02 to 0.17)	-0.38 (-0.47 to -0.28)	-0.41 (-0.51 to -0.32)

GLP1-RA – Mechanism of Action

Yabut JM. Endocr Rev 2022

Newsome PN et al. N Engl J Med 2021;384:1113-1124.

FGF-21 Has Potential to Be Mainstay of Therapy

Endogenous metabolic hormone that regulates energy expenditure and glucose and lipid metabolism

Reduces liver fat by action within liver and from periphery

Impacts liver fibrosis via metabolic pathway and upregulation of adiponectin

Native FGF21 has a short half**life** of < 2 hours

Geng L, et al. Nat Rev Endocrinol. 2020 Nov;16:654-667.

2024

Harrison SA et al. Lancet Gastroenterol Hepatol. 2023 Dec;8(12):1080-1093

Harrison SA et al. Lancet Gastroenterol Hepatol. 2023 Dec;8(12):1080-1093

Additional Benefits

Lipid & glycemic control, and body weight reduction

Absolute Change from Baseline

	Placebo	EFX 28 mg	EFX 50 mg
Body weight	-0.6	-0.2	-2.9
HbA1c	0	-0.3	-0.4

Percent Change from Baseline

	Placebo	EFX 28 mg	EFX 50 mg
TG	+9	-25	-29
LDL-c	+9	-8	-8

Pegozafermin – Phase 2b

My Perspective on Non-Cirrhotic NASH

My Perspective on Non-Cirrhotic NASH

Drugs in Phase 3	Administration	NASH Resolution	Fibrosis Improvement	Insulin Sensitivity	Lipid Benefits	Safety Tolerability
Resmetirom	B	\sim				\sim
Lanifibranor		\sim		\sim	\sim	\sim
Semaglutide	THI	\sim		\sim		\sim
Efruxifermin		\sim	\sim	\sim	\sim	\sim
Pegozafermin	T	\sim	\sim	\sim		\sim

My Perspective on Non-Cirrhotic NASH

Completed Phase 2	Administration	NASH Resolution	Fibrosis Improvement	Insulin Sensitivity	Lipid Benefits	Safety Tolerability
PXL065				\sim		\sim
Icosabutate				\sim	\sim	\sim
Denifanstat		\sim	\sim			\sim
Tirzepatide		\sim		\sim		\sim
Survodutide		\sim		\sim		\sim

My Perspective on Patient Management with New Drugs

Obese (with or without T2DM) Patients with Mild Disease F0-F2

First line = > GLP1-Ra

Second line = > Resmo

Resmetirom

My Perspective on Patient Management with New Drugs

Non-T2DM Obese Patients with Advanced Disease F3

First line = > Resmetirom

Second line = >

FGF-21

My Perspective on Patient Management with New Drugs

T2DM Obese Patients with Advanced Disease F3

First line = > FGF-21

Second line = > Resn

Resmetirom

THANK YOU

ARIZONA

LIVER

FAI

Practical SLD Cases and Panel Discussion

- Naim Alkhouri, MD
- Chief Medical Officer
- Director of the Steatotic Liver Program
- Arizona Liver Health (ALH)
- Chandler, AZ

Objectives

- Discuss the implementation of screening and risk stratification pathways in primary care and endocrinology clinic.
- Describe the management of MASLD/ MASH in specialty care (hepatology and GI).
- @AlkhouriNaim

Real-World Case 1: Primary Care

Jack

Weakness

- 41 y.o. M with BMI of 41 kg/m2 but no T2D or MetS.
- Presents with incidental finding of fatty liver on US done to assess for RUQ pain.
- ALT 56 U/L (10-30 U/L)
- AST 36 U/L (10-30 U/L)
- Albumin 4.4 g/dL (3.5-4.5 g/dL)
- Platelet count 279 k/uL (150-400 k/uL)

FIB4= 0.71 (Low) → Keep in Primary Care → Lifestyle intervention → Repeat FIB4 in 2-3 years

Real World Case 2: Primary Care

Tina

Weakness

- 59 y.o. F with BMI of 42 kg/m2 and MetS presents with elevated LFTs.
- ALT 66 U/L (10-30 U/L)
- AST 61 U/L (10-30 U/L)
- Albumin 4.1 g/dL (3.5-4.5 g/dL)
- Platelet count 191 k/uL (150-400 k/uL)

FIB4= 2.32 (Intermediate) → 2nd NIT

ELF = 9.2 (> 7.7) \rightarrow Refer to a specialist
Real-World Case 2: Primary Care

Weakness

- 60 y.o. M with T2D, BMI of 39 kg/m2 and MetS.
- Presents with persistently elevated liver enzymes and fatty liver on US.
- ALT 66 U/L (10-30 U/L)
- AST 76 U/L (10-30 U/L)
- Albumin 3.5 g/dL (3.5-4.5 g/dL)
- Platelet count 147 k/uL (150-400 k/uL)

FIB4= 3.79 (High) → Refer to a specialist

Introducing Mrs T

- Age: 55 years
- BMI: 42 kg/m²
- LDL-C: 98 mg/dL
- BP: 128/78 mm Hg
- A1C: 6.2%

Medically complicated obesity

Current medications

Atorvastatin: 80 mg daily Losartan: 50 mg daily

AASLD Practice Guidance: Screening for Advanced Fibrosis in High-Risk Populations

Prevalence of advanced fibrosis in background population: 0.9% to 2.0%

Groups recommended for screening	Prevalence of advanced fibrosis
Medically complicated obesity	4% to 33%
T2D	6% to 19%
MASLD in people with moderate alcohol use	17%
First-degree relatives of people with MASLD cirrhosis	18%

- Certain populations have an elevated risk for advanced fibrosis
- Delayed diagnosis linked to increased morbidity, mortality, and cost
- Off-label use of available medications with mortality benefit (nonhepatic) and probable benefit on MASLD based on trial data

Mrs T's Test Results From Primary Care

- ALT: 90 U/L
- AST: 76 U/L
- Albumin: 4.0 g/dL
- Platelet count: 202 k/ μ L
- Initial FIB-4 in primary care = $2.18 \rightarrow$ Sequential testing \rightarrow Second NIT
- LSM = 9.9 kPa, triggering specialist referral

Target Population for Hepatology Care

At-risk MASH = MASH + F2 or higher

AASLD Practice Guidance: Primary Care or Specialist Care?

1835;

New Scores for Identifying At-Risk MASH in Specialty Care: FAST

FAST (FibroScan-AST): Composite score calculated from LSM, CAP, and AST

Diagnostic performance across derivation and validation cohorts¹

AUROC	0.80-0.95
Rule-out (FAST ≤0.35)	
Sensitivity	0.64-1.00
Specificity	0.35-0.86
NPV	0.73-1.00
Rule-in (FAST ≥0.67)	
Specificity	0.82-0.99
Sensitivity	0.25-0.75
PPV	0.33-0.83

FAST for MASH²

to LSM

≤0.35: low probability of at-risk MASH → sequential testing for people with high LSM values

FAST score calculator: https://www.echosens.com/products/fast/

1. Newsome PN, et al. Lancet Gastroenterol Hepatol. 2020;5(4):362-373; 2. Noureddin N, et al. Hepatology. 2020; 72(6):2228-2230.

Mrs T's Test Results in Hepatology Care

- Mrs T had a risk factor for at-risk MASH (medically complicated obesity) so underwent additional assessment
- VCTE: CAP 343 dB/m, LSM 9.9 kPa → suggestive of moderate-to-advanced fibrosis (F2/F3)
- FAST score: 0.74 → Mrs T has at-risk MASH with significant fibrosis

Audience Question

Which of the following interventions would you consider? You may choose more than one.

- 1. Lifestyle interventions
- 2. Cardiovascular risk reduction
- 3. Weight management
- 4. Pharmacotherapy with proven benefit in MASH such as resmetirom^a

Treatment

- Mrs T is already on a statin and antihypertensive agent to manage her lipids and BP; blood glucose is at recommended levels
- Weight management is essential due to high BMI (42 kg/m²), pre-diabetes, and at-risk MASH with significant fibrosis:
 - Structured lifestyle interventions tailored to the individual
 - Consideration of additional interventions to achieve greater weight loss/manage risk

Audience Question

Would you consider any of the following interventions for Mrs T? You may choose more than one.

- 1. Bariatric surgery
- 2. GLP-1 RA (at doses approved for obesity treatment)
- 3. Pioglitazone
- 4. SGLT2 inhibitor
- 5. Vitamin E

Treatment

- You start Mrs T on semaglutide with titration up to 2.4 mg weekly for weight management.
- At her 1-year follow up visit, she has lost 21 lbs and her BMI now is down from 42 to 37 kg/m2:
- ALT: 90 → 65 U/L
- AST: 76 → 61 U/L
- Platelet count: 202 \rightarrow 211 k/µL
- LSM = 9.9 \rightarrow 10.4 kPa and CAP 343 \rightarrow 322.
- If resmetirom is FDA-approved, would you consider starting it for this patient?
 - Heck yeah!
 - Absolutely not!

Introducing Mr F

- Age: 60 years
- BMI: 34 kg/m²
- LDL-C: 95 mg/dL
- BP: 152/86 mm Hg
- A1C: 6.9% (T2D diagnosed at age 54)
- ALT: 66 U/L
- AST: 76 U/L
- Albumin: 3.5 g/dL
- Platelet count: 147 k/μL
- FIB-4 in primary care = 3.82 (high), triggering specialist referral for additional tests

Current medications

Metformin: 1000 mg BID Sitagliptin: 100 mg daily

Further Assessments in Hepatology Clinic

- VCTE: CAP 302 dB/m; LSM 21.1 kPa \rightarrow suggestive of cirrhosis (F4)
- Abdominal ultrasound showed nodular liver and splenomegaly of 14.5 cm

Audience Question

What evidence supports the presence of cirrhosis in this individual?

- 1. VCTE LSM > 20 kPa
- 2. FIB-4 score > 3.5
- 3. Nodular liver on ultrasound
- 4. Splenomegaly
- 5. All of the above

Audience Question

Which of the following interventions would you consider? You may choose more than one.

- 1. Lifestyle interventions
- 2. Cardiovascular risk reduction
- 3. Weight management
- 4. Initiation of carvedilol for clinically significant portal hypertension
- 5. Hepatocellular carcinoma surveillance and EGD to screen for varices

β Blockers to Prevent Decompensation of Cirrhosis in Clinically Significant Portal Hypertension

Villanueva C, et al. Lancet. 2019;393(10181):1597-1608.

New Paradigm in the Management of Compensated Cirrhosis

Goal: Prevent clinical decompensation (ascites, variceal hemorrhage, encephalopathy)

LSM and PLT count	Action
LS >25 kPa	CSPH → start carvedilol
LS >20-25 kPa + PLT <150K	CSPH → start carvedilol
LS <20 kPa or PLT >150K	Annual LS and PLT measurement

Treatment

- Weight management is essential due to high BMI (34 kg/m²):
 - Structured lifestyle interventions tailored to the individual
 - Strong need for additional interventions to achieve greater weight loss/manage risk
- Mr F also has T2D, which is managed with medication

Audience Question

Considering the whole clinical picture, would you suggest any changes to Mr F's T2D medication?

- 1. No, leave it unaltered
- 2. Yes, replace the DPP-4 inhibitor with a GLP-1 RA
- 3. Yes, replace the DPP-4 inhibitor with pioglitazone
- 4. Yes, replace the DPP-4 inhibitor with an SGLT2 inhibitor
- 5. Yes, replace the DPP-4 inhibitor with insulin

The Big Fight/ The Rumble in the Jungle

Fight 1

- 56 y.o. with PMHx of T2DM for 12 years who has been on Dulaglutide (Trulicity) for the past 5 years.
- BMI is 29.1 and HbA1C is at 6.4%.
- Fibroscan: LSM 11.3 kPa c/w F3 fibrosis and CAP of 362 dB/M c/w S3 steatosis.

Fight 2

- 53 y.o. male with PMHx of HTN, OSA and obesity (BMI 37.2) presents with incidental finding of hepatosplenomegaly on US.
- Fibroscan: LSM 8.6 kPa c/w F2 fibrosis and CAP of 371 dB/M c/w S3 steatosis.

Fight 2

- 61 y.o. Asian-American female with history of dyslipidemia and BMI of 22 kg/m2 presents with mild elevation in AST and ALT.
- Fibroscan: LSM 9.4 kPa c/w F2 fibrosis and CAP of 302 dB/M c/w S2 steatosis.

Take Home Messages

- Patients with at-risk MASH will be the target for new pharmacological treatments once approved.
- Patients may get started on a medication for weight loss initially, but liver-directed therapies will be needed in those with no significant improvement.
- Patients with advanced fibrosis need medications with proven anti-fibrotic efficacy.
- Identifying MASH cirrhosis is critical:
 - Start HCC surveillance
 - Start carvedilol/nonselective beta-adrenergic blocker in those with CSPH

Panel Discussion

Moderator: Naim Alkhouri, MD, FAASLD, ABOM

Meena Bansal, MD

Mazen Noureddin, MD, MHSc

Stephen Harrison, MD, FACP, FAASLD

CME/MOC Form

CME University

- Login or Create a New Account
- Type in 18380 at the top of the page – follow instructions
- Form is in your Folder
- Virtual Attendance link will be sent to you via email

Lunch Break

12:15 – 12:45 PM Break & Exhibits 12:45 – 1:15 PM Product Theater / Lunch Available 1:15 – 1:45 PM Break & Exhibits DESERT LIVER CONFERENCE PHOENIX, ARIZONA

PRODUCTTHEATER

Date: Saturday, March 2nd

Time: 12:45 PM - 1:15 PM - Lunch Available
Location: Arizona Biltmore Ballroom

(8) desertliver.com

Identifying and managing risk of disease progression in patients with PBC

©2024 Ipsen Biopharmaceuticals, Inc. All rights reserved. 1/2024 NON-US-003653

Disclosures

- This presentation is a promotional program provided by Ipsen Biopharmaceuticals, Inc.
- Faculty are speaking on behalf of Ipsen and being compensated for their time
- This presentation is not a continuing medical education (CME) program

Objectives

The aim of this session is to:

- Examine the progression of PBC and its major stages
- Review risk factors for disease progression and the need for ongoing monitoring
- Examine the demographics, incidence, and prevalence of PBC
- Review the AASLD diagnostic criteria for PBC
- Differentiate and respond to the distinct experiences and symptoms of each patient with PBC
- Identify prognostic risk factors and distinguish between those identified at diagnosis and those that require ongoing monitoring throughout the disease course
- Discuss strategies for frequent and early reassessment with a focus on personalized care
- Discuss patient case studies depicting common scenarios encountered by physicians managing patients with PBC

PBC progression is highly variable, but may ultimately lead to end-stage liver disease and death^{1,2}

 PBC typically advances through distinct stages, and, if left untreated, can lead to cirrhosis and end-stage liver disease²

Nearly half (46%) of patients with biochemically early-stage PBC progress to a **moderately advanced stage within 5 years**^{3,a}

PBC, primary biliary cholangitis; UDCA, ursodeoxycholic acid.^a Based on Rotterdam treatment response criteria, defined normal bilirubin and albumin concentrations after treatment with UDCA when one or both parameters were abnormal before treatment, or as normal bilirubin or albumin concentrations after treatment when both were abnormal at entry.⁴ 1415 patients (87.6%) in this cohort were treated with UDCA.³

1. Lindor KD et al. *Hepatology*. 2019;69(1):394-419. 2. European Association for the Study of the Liver. *J Hepatol*. 2017;67(1):145-172. 3. Gatselis NK et al; Global Primary Biliary Cholangitis Study Group. *Clin Gastroenterol Hepatol*. 2020;18(3):684-692; 4. Kuiper EMM et al; Dutch PBC Study Group. *Gastroenterology*. 2009;136(4):1281-1287.

Advancements in PBC care improve prognosis and reduce transplants, despite persistent cirrhosis risks¹⁻³

 More effective treatments for PBC mean disease progression is slower and higher clinical remission rates can be expected if patients are treated early¹

PBC prognosis is improving, likely due to earlier identification and availability of noninvasive treatments¹

Cirrhosis-related complications are strongly associated with a poor prognosis and a reduced life expectancy³

The proportion of liver transplantations for PBC decreased from 20.3% in 1986 to 3.7% in 2015^{2,a} Patients with **cirrhosis-related complications** may eventually require a liver transplant, which is associated with potential complications, including **recurrence of PBC**³

PBC, primary biliary cholangitis. ^a Data collected from 6029 patients with PBC transplanted in European Liver Transplantation Registry-associated centers from 1986 to 2015.² 1. Al-Harthy N et al. *Hepat Med*. 2012;4:61–71; 2. Harms MH et al. *Ailment Pharmacol Ther*. 2019;49:285–295; 3. Younossi ZM et al. *Am J Gastroenterol*. 2019;114:48–63.

PBC is a chronic inflammatory autoimmune cholestatic liver disease that disproportionally affects women^{1,2}

Demographics	Incidence	Prevalence
**** *****	0.9 to 5.8	1.9 to 40.2
Females account for approximately 92% of reported cases of PBC (10:1) ²	cases per 100,000 individuals on an annual basis ^{2,a}	cases per 100,000 individuals and has been rising over time ²

PBC, primary biliary cholangitis. ^a Data collected from studies conducted in Europe, North America, Asia, and Australia.² 1. European Association for the Study of the Liver. *J Hepatol*. 2017;67(1):145-172. 2. Sarcognato et al. *Pathologica*. 2021;113(3):170–84.

PBC symptomatology may influence both patient experience and therapeutic outcomes^{1,2}

Fatigue or pruritus affect >50% of patients with PBC ¹	Symptom severity may fluctuate over time – not always correlated with the severity of underlying liver disease ¹
Worsening symptoms, particularly pruritus and fatigue, affect patients' quality of life ¹	Some patients initially present as asymptomatic , but may develop new or additional symptoms over time ²

- Symptoms associated with PBC include cholestatic pruritus, sicca complex, abdominal discomfort, restless legs, sleeplessness, depression and cognitive dysfunction¹
- The presence of symptoms, particularly severe pruritus in a ductopenic variant of PBC, has been shown to be predictive of a
 poorer response to UDCA therapy^{1,2}
- EHAIDs are common in PBC patients, affecting initial symptoms but not the disease outcome³

EHAIDS: extrahepatic autoimmune diseases; PBC, primary biliary cholangitis; UDCA, ursodeoxycholic acid.

1. European Association for the Study of the Liver. J Hepatol. 2017;67(1):145-172. 2. Lindor KD et al. Hepatology. 2019;69(1):p394-419. 3. Efe C et al. J Gastroenterol Hepatol. 2021; 36(4):936-942.

AASLD provides criteria for the diagnosis of PBC¹

• A diagnosis of PBC can be made when ≥2 AASLD diagnostic criteria are met¹:

AASLD diagnostic criteria ¹		
1	Biochemical evidence of cholestasis based on ALP elevation	
2	Presence of AMA or other PBC-specific autoantibodies, including sp100 or gp210	
3	Histologic evidence of nonsuppurative destructive cholangitis and destruction of interlobular bile ducts	
Liver biopsy is not generally required for the diagnosis of PBC, though inconclusive laboratory results may warrant a liver biopsy		

• **Differential diagnoses:** cholestatic drug reaction, biliary obstruction, sarcoidosis, AIH, and PSC¹

AASLD, American Association for the Study of Liver Disease; AIH, autoimmune hepatitis; ALP, alkaline phosphatase; AMA, antimitochondrial autoantibody; gp210, 210 kDA glycoprotein; PBC, primary biliary cholangitis; sp100, speckled 100 kDA protein.

1. Lindor KD et al. *Hepatology.* 2019;69:394-419.

Multiple studies have reported an association between demographic risk factors and disease outcomes with PBC¹⁻⁶

 Age, sex, and ethnicity or race are predictors of response to UDCA therapy at diagnosis, including symptom control, as well long-term outcomes with PBC¹⁻⁶

Age & Sex^{1,2}

- Patients diagnosed with PBC before 45 years are frequently symptomatic and less likely to respond favorably to first-line treatment with UDCA
- Males with PBC tend to experience a more severe disease and a poorer prognosis compared with women.

Ethnicity/Race³⁻⁶

- People of color living with PBC tend to have more severe disease at diagnosis and experience worse long-term outcomes compared with Caucasian patients
- Compared with Caucasian patients, African American and Hispanic patients with PBC at presentation have a:
 - 2.8x greater prevalence of **ascites**
 - 4.3x greater prevalence of **hepatic encephalopathy**
 - 2.9x greater history of variceal bleeding

PBC, primary biliary cholangitis; UDCA, ursodeoxycholic acid.

1. European Association for the Study of the Liver. *J Hepatol*. 2017;67(1):145-172. 2. John BV et al. *Hepatology*. 2021;74:879–891. 3. Peters MG et al. *Hepatology*. 2007;46(3):769–75. 4. Cholankeril G et al. *Clin Gastroenterol Hepatol*. 2018;16(6):965-973.e2. 5. Galoosian A et al. *Dig Dis Sci*. 2020;65(2):406–15. 6. Sayiner M et al. *Hepatology*. 2019;69(1):237–44.

LSM, FIB4 index, and APRI score can be used as indicators of fibrosis at diagnosis and to monitor disease progression¹⁻⁴

Serum measures of fibrosis – FIB4 & APRI score*

- The FIB4 index can be used to screen individuals at a high risk of liver disease – calculated from age, ALT, AST, and platelet count¹
- An elevated APRI score (>0.54) at diagnosis is associated with a higher risk of complications²
- LSM utilizing VCTE is recognized as a highly reliable surrogate marker for the identification of cirrhosis or severe fibrosis^{3,4}
- Liver stiffness of ≥10 kPa indicates a higher stage of fibrosis, suggesting a potential risk for disease progression and adverse outcomes, including liver decompensation, transplantation, or death^{3,4}
- Changes in LSM may indicate PBC progression³

FIB4 index, APRI score, and LSM with VCTE can serve as crucial markers for identifying advanced fibrosis and predicting the risk of disease progression and adverse outcomes in PBC¹⁻⁴

*FIB4 index and APRI score are not fully validated measures for stratifying risk of disease progression in cholestatic liver disease.

APRI, AST to Platelet Ratio Index; ALT, alanine aminotransferase; AST, aspartate aminotransferase; kPa, kilopascals; LSM, liver stiffness measurement; PBC, primary biliary cholangitis; VCTE, vibration-controlled transient elastography.

1. Blanco-Grau A et al. *Diagnostics*. 2021;11(12):2236. 2. Trivedi PJ et al. *J Hepatol*. 2014;60(6):1249–58. 3. European Association for the Study of the Liver. *J Hepatol*. 2017;67(1):145-172. 4. Kowdley KV et al. *Am J Gastroenterol*. 2023;118(2):232-242.

Case study: New diagnosis with prognostic risk factors

Patient: 44-year-old male, White/Caucasian

- Presenting symptoms: Fatigue, pruritus
- Medical history: Hypertension, obesity, hyperlipidemia
- Current medications: Antihypertensive medications
- Allergies: No reported allergies
- Social history: Nonsmoker, occasional alcohol intake

Laboratory results:

- Elevated ALP: 264 U/L; 1.8 X ULN
- PBC-specific ANA positive
- Bilirubin: 0.4 mg/dL
- LSM: 9.5 kPa (VCTE), CAP score: 290 dB/m
- Liver biopsy: Not performed

Actor portrayal

ANA, anti-nuclear antibody; ALP, alkaline phosphatase; kPa, kilopascals; LSM, liver stiffness measurement; PBC, primary biliary cholangitis; ULN, upper limit of normal; VCTE, vibration-controlled transient elastography.

Early-stage biochemical responses to UDCA therapy are crucial for better disease outcomes¹

• Albumin and bilirubin levels are strong predictors of risk for progression, liver transplant, and death in patients with PBC²

Adapted from Lammers WJ et al, 2014¹

ALP, alkaline phosphatase; PBC, primary biliary cholangitis; UDCA, ursodeoxycholic acid; ULN, upper limit of normal.

1. Lammers WJ et al. *Gastroenterol*. 2014;147:1338–1349. 2. Lindor KD et al. *Hepatology*. 2019;69:394–419. 3. Corpechot C et al. *Clin Res Hepatol Gastroenterol*. 2022;46(1):101770. 4. European Association for the Study of the Liver. *J Hepatol*. 2017;67(1):145-172. 5. Hirschfield GM et al. *Gut*. 2018;67:1568–1594. 6. Younossi ZM et al. *Am J Gastroenterol*. 2019;114(1):48–63.

ALP¹⁻⁵

- High ALP levels are a persistent and early indicator of disease progression
- Very high ALP levels at diagnosis (>5 X ULN) are usually indicative of severe/symptomatic disease with a lower likelihood of response to treatment
- UDCA-treated patients with ALP levels >1.67 X ULN should be considered for second-line therapy

Total bilirubin^{1,6}

- High bilirubin levels predict poor survival
- Elevations may occur as PBC progresses significant hyperbilirubinemia indicates advanced disease

Case study: Inadequate biochemical response to first-line therapy with UDCA

Patient: 58-year-old female, Black/African-American

- PBC history: Diagnosed 6 months ago, on UDCA
- Current symptoms: Persistent pruritus, steatorrhea
- Medical history: Diabetes mellitus
- Current medications: UDCA, metformin
- Allergies: Penicillin

Laboratory results:

- Liver enzymes: ALP remains elevated despite UDCA therapy (2.1 X ULN)
- Bilirubin: 0.8 mg/dL decreased to 0.6 mg/dL on therapy
- LSM: 7.4 kPa (VCTE); 7.0 kPa at last check-up 15 months ago
- Liver biopsy: Not performed
- Symptomatology: No significant relief from pruritus

ANA, anti-nuclear antibody; ALP, alkaline phosphatase; ALT, alanine transaminase; AST, aspartate aminotransferase; kPa, kilopascals; LSM, liver stiffness measurement; PBC, primary biliary cholangitis; UDCA, ursodeoxycholic acid; ULN, upper limit of normal; VCTE, vibration-controlled transient elastography.

Actor portrayal

Inadequate treatment response may also present as continued symptom presentation and signs of progression¹⁻⁴

- While many patients respond biochemically to treatment, some may **experience worsening symptoms**, as ALP and bilirubin levels do not always correlate to symptom severity¹⁻³
- Symptom presence itself may predict poorer response to UDCA and worse prognosis⁴
- Patients may experience an initial response to treatment, followed by rising markers of liver function, including liver enzyme levels, years later, indicating disease progression⁵

UDCA, ursodeoxycholic acid.

1. Hirschfield GM et al. *Gut.* 2018;67:1568–1594. 2. Carbone M et al. *Gastroenterology.* 2013;144(3):560–569. 3. Mells GF et al. *Hepatology.* 2013;58(1):273-283. 4. European Association for the Study of the Liver. *J Hepatol.* 2017;67(1):145-172. 5. Gatselis NK et al. Global Primary Biliary Cholangitis Study Group. *Clin Gastroenterol Hepatol.* 2020;18(3):684-692.

Case study: Symptomatic despite biochemical response to UDCA

Patient: 61-year-old female, White/Caucasian

- **PBC history:** Diagnosed 12 months ago, on UDCA
- Current symptoms: Fatigue, abdominal discomfort
- Medical history: No significant past illness
- Current medications: UDCA
- Allergies: No reported allergies

Laboratory results:

- Liver enzymes: Normalization of ALP, AST, ALT with UDCA
- LSM: 7.0 kPa (VCTE); 7.3 kPa at last check-up 9 months ago
- Liver biopsy: Not performed
- Symptomatology: Symptoms persist despite biochemical response to UDCA

Actor portrayal

ANA, anti-nuclear antibody; ALP, alkaline phosphatase; ALT, alanine transaminase; AST, aspartate aminotransferase; kPa, kilopascals; LSM, liver stiffness measurement; PBC, primary biliary cholangitis; UDCA, ursodeoxycholic acid; VCTE, vibration-controlled transient elastography.

AASLD risk stratification guidelines consider UDCA therapy response and treatment-emergent factors¹

Adapted from AASLD 2018 guidelines¹

AASLD risk stratification guidelines consider UDCA therapy response and treatment-emergent factors¹

Adapted from AASLD 2018 guidelines¹

Prognostic factors should be used to stratify risk of progression at diagnosis and monitored during management¹

Risk factors at diagnosis ¹⁻⁴	Treatment-emergent risk factors ^{1,4-8}
Younger age	• Inadequate response to UDCA at 6 or 12 months
• Male	 Unchanged or worsening symptoms
 Non-Caucasian patients 	 Inadequate biochemical response
(eg, African American, Hispanic patients)	 Rising total bilirubin levels
Presence of symptoms	 Decreasing albumin levels
 Very high ALP levels (>5 x ULN) 	• LSM ≥10 kPa
Elevated total bilirubin levels	Portal hypertension
Low albumin	
 Presence and degree of cirrhosis 	

ALP, alkaline phosphatase; kPa, kilopascals; LSM, liver stiffness measurement; UDCA, ursodeoxycholic acid; ULN, upper limit of normal.

1. European Association for the Study of the Liver. J Hepatol. 2017;67(1):145-172; 2. Peters MG et al. Hepatology. 2007;46(3):769–75; 3. Corpechot C et al. Clin Res Hepatol Gastroenterol. 2022;46(1):101770; 4. Lammers WJ et al. Gastroenterol. 2014;147:1338–1349; 5. Trivedi PJ et al. J Hepatol. 2014;60:1249–58; 6. Kowdley KV et al. Am J Gastroenterol. 2023;118(2):232-242; 7. Lindor KD et al. Hepatology. 2019;69(1):p394-419; 8. Murillo Perez CF et al. Liver Int. 2023;43:1497-1506.

Implementing a structured, 6- or 12-monthly reassessment schedule to evaluate treatment response and disease status

- **Biochemical response to UDCA**, usually assessed after 12 months of initiating therapy, is a validated method to identify patients who may benefit from second-line therapies¹
- A 6-month assessment period has emerged as an equally discerning assessment period, providing earlier insight into patient responsiveness to UDCA¹
 - Recent research has suggested that second-line therapy can be considered at 6 months^{2,3}
 - 90% of improvements in liver tests typically occur in the first 6–9 months of treatment with UDCA⁴
- As PBC progresses, it is recommended that the frequency of liver biochemistry assessments be increased to every 3–6 months to closely monitor potential complications⁴
- Due to the increased risk of HCC in patients with cirrhosis, ultrasound surveillance every 6 months is recommended⁴
- Regular follow-up intervals should be determined by the severity of symptoms and the patient's risk profile⁵

Evaluating UDCA response at 6 months may offer early insights, while more frequent biochemistry checks are vital as PBC progresses¹⁻⁴

ALP, alkaline phosphatase; HCC, hepatocellular carcinoma; PBC, primary biliary cholangitis; UDCA, ursodeoxycholic acid; ULN, upper limit of normal.

1. European Association for the Study of the Liver. J Hepatol. 2017;67(1):145-172; 2. Murillo Perez CF et al. Liver Int. 2023;43:1497-1506; 3. Kowdley KV et al. Am J Gastroenterol. 2023;118(2):232-242; 4. Lindor KD et al. Hepatology. 2019;69(1):p394-419; 5. Hirschfield GM et al. Expert Rev. Gastroenterol. 2021;15(8):929-939.

Implementing personalized management strategies for ongoing PBC care

- Regularly utilize biochemical, histological, and clinical evaluations to assess the progression of PBC and coordinate treatment plans¹⁻³
- Evaluate symptoms and perform liver function tests to monitor the patient's response to first-line therapy³
- Proactively address and manage fatigue and pruritus symptoms using both pharmaceutical and nonpharmacological interventions^{1,2}
- Identify high-risk patients, including those with multiple, severe, or intractable symptoms referral for specialized care may be necessary³
- Continuously assess patients for **signs of advanced disease**, such as portal hypertension, ascites, and bleeding varices, which may warrant treatment adjustments³

Collaborative care, inclusive of patients, helps ensure individualized, informed, and shared decision-making, leading to better health outcomes and enhanced quality of life⁴

PBC, primary biliary cholangitis.

1. European Association for the Study of the Liver. J Hepatol. 2017;67(1):145-172. 2. Lindor KD et al. Hepatology. 2019;69(1):p394-419; 3. Hirschfield GM et al. Gut. 2018;67:1568–1594; 4. Vahdat S et al. Iran Red Crescent Med J. 2014;16(1):e12454.

Enhanced, regular risk assessment and collaborative care can help ensure an adaptive and personalized approach¹⁻³

Ensure continuous assessment of prognostic risk factors and treatment response

- Consider establishing 6-monthly disease and risk factor evaluations to ensure early detection of progression and disease complications^{1,2}
 - Adopt procedures for tracking the progression of PBC and conducting systematic disease assessments³

Develop adaptive disease management plans

- Focus disease management on initiating
 UDCA and assessing response for all patients³
- Risk stratification based on baseline and on-treatment factors, including response to treatment³

Involve patients in care decisions

Commit to collaborative decision-making with patients and furthering their knowledge of the disease state and available treatment options³

Questions?

PBC, primary biliary cholangitis.

1. European Association for the Study of the Liver. J Hepatol. 2017;67(1):145-172. 2. Murillo-Perez CF et al. Liver Int. 2023;43:1497-1506; 3. Hirschfield GM et al. Gut. 2018;67:1568–1594.

Thank you to the generous sponsors of The Desert Liver Conference 2024!

www.desertliver.com

CME/MOC Form

CME University

- Login or Create a New Account
- Type in 18380 at the top of the page – follow instructions
- Form is in your Folder
- Virtual Attendance link will be sent to you via email

HEPATITIS B and DELTA: BAD <u>BED</u>FELLOWS

Julio Gutierrez, MD

Associate Professor

Scripps Center for Organ Transplant La Jolla, CA

VIROLOGY, EPIDEMIOLOGY AND SCREENING

GUTIERREZ JA 2024

Osmosis.com

Osmosis.com

HBV Persistence: Viral Integrants and cccDNA

GLOBAL BURDEN OF HEPATITIS B

WHO REGIONS

GLOBAL HBV: DIAGNOSIS AND TREATMENT

Percentage of hepatitis B infected persons diagnosed to end 2019
 Percentage of hepatitis B infected persons treated to end 2019

WHO, 2021

CALL TO ACTION: CDC 2023 REC

Universal hepatitis B virus (HBV) screening

- HBV screening at least once during a lifetime for adults aged ≥18 years (new recommendation)
- During screening, test for hepatitis B surface antigen (HBsAg), antibody to HBsAg, and total antibody to HBcAg (total anti-HBc) (new recommendation)

Screening pregnant persons

- HBV screening for all pregnant persons during each pregnancy, preferably in the first trimester, regardless of vaccination status or history of testing*
- Pregnant persons with a history of appropriately timed triple panel screening and without subsequent risk for exposure to HBV (i.e., no new HBV exposures since triple panel screening) only need HBsAg screening

Risk-based testing

- Testing for all persons with a history of increased risk for HBV infection, regardless of age, if they might have been susceptible during the period of increased risk[†]
- Periodic testing for susceptible persons, regardless of age, with ongoing risk for exposures, while risk for exposures persists[†]

Universal Screening with Expanded Testing is Here! All adults, whole panel - HBsAg, anti-HBs, and anti-Hbc total EXPANDED RISK BASED TESTING!

Original Investigation | Gastroenterology and Hepatology Diagnosis Rates of Chronic Hepatitis B in Privately Insured Patients in the United States

Eiichi Ogawa, MD, PhD; Yee Hui Yeo, MD, MSc; Nolan Dang, BS; Michael H. Le, MS; Donghak Jeong, MS; Sally Tran, BS; Linda Henry, PhD; Ramsey Cheung, MD; Mindie H. Nguyen, MD, MAS

Le MH/Nguyen MH, Hepatology 2020, PMID: 31228279; Nguyen V/Nguyen MH, Clin Gastroenterol Hepatol 2018; PMID:30326298.

PREVALENCE OF HBV IN CHILDREN <5

HEPATITIS DELTA GLOBAL EPIDEMIOLGY

The Journal of Infectious Diseases, Volume 221, Issue 10, 15 May 2020, Pages 1677–1687,

Costante F. J Hepatocell Carcinoma. 2023; 10: 713-724

INDISTINGUISHABLE FROM ACUTE HBV MONO-INFECTION

Gutierrez JA. Clin Liver Dis. 2023 Nov;27(4):937-954.

Gutierrez JA. Clin Liver Dis. 2023 Nov;27(4):937-954.

Gutierrez JA. Clin Liver Dis. 2023 Nov;27(4):937-954.

WHICH HBV PATIENT NEEDS TREATMENT

GUTIERREZ JA 2024

AASLD CURRENT TREATMENT GUIDELINES

 Requires consideration of 3 labs results HBeAg, HBV DNA, ALT and fibrosis stage

HBeAg	HBV DNA IU/mL	ALT U/L	
Positive	>20,000	≥2XULN	
Negative	>2000	≥2XULN	

Immuno-modulatory therapy Drognomout

Pregnancy

Special populations:

HIV

Transplant recipients

- Active CHB = elevated ALT and HBV DNA
- Advanced fibrosis/cirrhosis
- Positive history of liver cancer

Supported by strong evidence base for treatment benefit

Norah Terrault, How to Simplify Treatment Criteria Under the Current HBV Guidelines. AASLD 2023.

PHASES OF HBV, NOMECLATURE & BIOMARKERS

HBeAg POS, Chronic	HBeAg POS Chronic	HBeAg NEG Chronic	HBeAg NEG Chronic	"Gray Zone"	Occult
lmmune Tolerant	Immune (re)active	Inactive Carrier	HBeAg Neg Disease	Indeterminate	None
+	+	+	+	+	-
+	+	-	-	-	-
>107	>10 ⁵⁻ 10 ⁷	<10 ³	>10 ³ - <10 ⁵	2k-20k	detectable
<uln< td=""><td>>ULN</td><td><uln< td=""><td>>ULN</td><td>Fluctuates</td><td><uln< td=""></uln<></td></uln<></td></uln<>	>ULN	<uln< td=""><td>>ULN</td><td>Fluctuates</td><td><uln< td=""></uln<></td></uln<>	>ULN	Fluctuates	<uln< td=""></uln<>
Minimal findings	Necroinflam mation with varying fibrosis	Minimal findings	Necroinflam mation with varying fibrosis	Minimal or low necroinflmmation	Minimal findings but fibrosis can be present
	HBeAg POS, Chronic Immune Tolerant + >10 ⁷ <uln Minimal findings</uln 	HBeAg POS, ChronicHBeAg POS ChronicImmune TolerantImmune (re)active++++++>107>105-107 <uln< td="">>ULNMinimal findingsNecroinflam mation with varying fibrosis</uln<>	HBeAg POS ChronicHBeAg POS ChronicHBeAg NEG ChronicImmune TolerantImmune (re)activeInactive Carrier+++++->107>105-107<103	HBeAg POS, ChronicHBeAg POS ChronicHBeAg NEG ChronicHBeAg NEG ChronicImmune TolerantImmune (re)activeInactive CarrierHBeAg Neg Disease++++++++++>107>105-107<103	HBeAg POS,

WHY IT IS SO HARD

eAg POS

DO NOT TREAT: Mo DNA q 3-	onitor ALT and HBV 6 months	
TREAT	lf ALT ≤	ULN, monitor ALT and HBV DNA q 6 m
	If >ULN eval	uate, if advanced liver disease or >40 y treat
Hepatology67(4):15	60-1599, April 2018.	

eAg

NEG

DO NOT TREAT: Mo DNA q 3-	onitor ALT and HBV 6 months	
TREAT	If ALT ≤ULN, monitor ALT and HBV DNA q 6 m If >ULN evaluate, if advanced liver disease treat	
Hanatalagy 67(1):1560 1500 April 2018		

Hepatology67(4):1560-1599, April 2018.

ALTERNATE CAUSES OF ALT ELEVATIONS IN HBV

- Always consider alternative causes of ALT elevations
 - Other drivers may increase HCC and cirrhosis risk
 - ALT ULN 35 (men) and 25 U/L (women)
- Half of HBV patients with ALT elevations may be due to other causes
 - Alcohol and MASLD are the most common
 - Carefully evaluate in those with T2D

ALTERNATE CAUSES OF ALT ELEVATIONS IN HBV

IN AGE AND VIRAL LOAD WE TRUST

- Half of HBV patients with ALT elevations may be due to other causes
 - Alcohol and MASLD are the most common
 - Carefully evaluate in those with T2D

WHY THE INDETERMINATE PATIENTS IS IMPORTANT

GUTIERREZ JA 2024

MOST COMMON GRAY ZONE PATIENT

- Represent up to 38% of patients
- Most common scenario
 - HBeAg negative
 - HBV DNA <2000 IU/mL
 - Elevated ALT

 Simplification of Guidance would improve care, reduce errors and decrease burden of hepatocellular carcinoma.

Yao K, JVH 2021;28:1025-1033. Huang D, Clin Gastroenterol Hepatol 2021:S1542-3565. Huang D/Nguyen MD et al, Hepatol 2023; 78(5):1558-1568

probability of treatment weighting

(REAL-B Consortium)

٠

AGE AND VIRAL LOAD DEFINE IMMUNE TOLERANT PHASE

IMMUNE TOLERANT= IT

Kim G-A, APT 2020 Jun;51(11):1169-1179

HBV DNA levels ≥7 log associated with no significant increased risk of HCC
HBV DNA levels 6-7 log-IU/mL associated with highest risk of HCC
HBV DNA levels 6 log-IU/mL= 1,000,000

HCC RISK BY HBV DNA: NON-LINEAR PARABOLIC

compared with 8 log₁₀ IU/mL in CHB patients without significant ALT elevation.

Kim GA, Lim YS, et al. Aliment Pharmacol Ther. 2020;51:1169–79.

SIMPLIFIED HBV GUIDANCE: HBeAg-POS

Norah Terrault, How to Simplify Treatment Criteria Under the Current HBV Guidelines. AASLD 2023.

SIMPLIFIED HBV GUIDANCE: HBeAg-NEG

Norah Terrault, How to Simplify Treatment Criteria Under the Current HBV Guidelines. AASLD 2023.

PLEASE TELL ME YOU ARE DONE: qHBsAg

GUTIERREZ JA 2024

NOVEL HBV BIOMARKERS: qHBsAg

Quantitative HBsAg

- HBsAg clearance = functional cure
- Surrogate for Immune Control
- Low level predict HBsAg clearance1,2
- <10-100 predictor of relapse after stopping NA
- Response to new therapies

HBV virus

Hepatology, V64, p 381; 2012; Terrault et al., Hepatology 2021; Jeng W et al., Hepatology 2018; Cornberg M et al., Hepatology V 71. (3) 2020

INCIDENCE OF HBsAg LOSS IN CHRONIC CARRIERS

qHBsAg COULD BE USEFUL IN EVALUATION

HOW TO CURE HBV

Scripps

GUTIERREZ JA 2024

STATE OF THE ART: THERAPY FOR HBV

• NUCs: tenofovir, entecavir

- Delay progression of cirrhosis
- Reduce (but not eliminate) the risk of HCC,
- Reduce the need for liver transplantation

Interferon

- 7-10% additional HBsAg loss on top of NA
- Toxic side effects impact tolerability and limit use

• But.....

- NUCs do not target cccDNA or integrated HBV DNA
- A cure is seldom achieved on NUC therapy (<5%).
- Most HBsAg pos patients do not meet NA treatment starting criteria
- Life-long treatment gives cumulative costs and toxicity (TDF)
- Patients remain to have an HBV stigma and psychosocial problems

HBV: Approaching Functional Cure

	Sterilizing Cure	Idealistic Functional Cure	Realistic Functional Cure	Attainable Partial Functional Cure
	Never infected	Recovery after acute HBV	Chronic HBV with HBsAg loss	Inactive carrier off treatment
HBsAg	NEG	NEG	NEG	POS
Anti-HBs	NEG/POS	POS	POS/NEG	NEG
HBeAg	NEG	NEG	NEG	NEG
HBV DNA	Not Detected	Not Detected	Not Detected	Low Level
Hepatic DNA cccDNA	Not Detected	Detected	Detected	Detected
Integrated HBV DNA	Not Detected	Detected?	Detected	Detected
Liver Disease	None	None	Inactive, fibrosis	Inactive
Risk of HCC	Not increased	Not increased	Declines	Risk lower vs active hepatitis
2034			2024	

Cornberg Hepatology, March 2020

BARRIERS TO FUNCTIONAL CURE

- Persistence of cccDNA
 - Long half-life
 - Continuous replenishment
- HBsAg produced from integrated HBV DNA

Guadalupe. Viruses 2022, 14(12), 2654;

BACK TO THE FUTURE: COMBO THERAPY

EMERGING TARGETS

 Initial HBV Cure regimens will combine multiple agents that inhibit replication, reduce antigen burden and restore host immune control needed to maintain sAg loss post-treatment

HepB Foundation Drug Watch Site. Brahmania M, Feld J, Arif A, Janssen HL.Lancet Infect Dis. 2016 Feb;16(2):e10-21.

HOW TO CURE HEPATITIS DELTA

GUTIERREZ JA 2024

HDV TARGETS

Chronic on-therapy endpoints:

HDV viral load ≥2-log₁₀ decline*

and

ALT normalisation

Goals of therapy:

- Control disease progression
- Prevent HCC development
- Improve quality of life and survival

Life 2021, 11(2), 169

BULEVIRTIDE

The NEW ENGLAND JOURNAL of MEDICINE

- Ongoing phase 3 trial, which includes 144 weeks of treatment and 96 weeks of post-treatment follow-up.
- Combined Primary outcome at w48 of undetectable HDV RNA, or level decreased by at least 2 log₁₀ IU/mL from baseline, and normalization of ALT.

BULEVIRTIDE: COMBINED RESPONSE AT W48

Wedemeyer. N Engl J Med 2023; 389:22-32

BULEVIRTIDE: WELL TOLERATED

Wedemeyer. N Engl J Med 2023; 389:22-32

SCIENCE NEWS

FDA Declines Approval of First Hepatitis D Treatment

SUMMARY FOR BAD BEDFELLOWS: B AN D

- Screen all your patients for hepatitis B
- Screen HBV patients for Delta: HDV AB w/reflex HDV RNA
- Treating HBV in the "Grey Zone" can reduce HCC
- Simplify care of HBV eAg POS:
 - eAg POS: <40 Y+ risk= Treat; >40 Y + HBV DNA >20k(or risk) = Treat
 - Don't' treat Immune Tolerant
 - eAg NEG: HBV DNA 2-10K + risk= Treat or >10k= Treat
- qHBsAg can help stratify low HBV DNA patients
- Functional Cure may be achieved with future combo therapies
- Bulevirtide is safe and effective but not approved by the FDA.

GUTIERREZ JA 2024

HCV Elimination: Where are we now?

Anita Kohli, MD, MS

Infectious Disease

CEO Arizona Liver Health & Research Medical Director

HCV: State of Affairs

- Chronic illness results in cirrhosis, liver cancer and premature deaths
- No vaccine available

Simple, well tolerated treatment of 8-12 weeks cures 95-98% of people!

https://www.hhs.gov/sites/default/files/Viral-Hepatitis-National-Strategic-Plan-2021-2025.pdf

HCV State of Affairs: WHO's goal is to eliminate viral hepatitis as a major public health problem by 2030

Source: Global progress report on HIV, viral hepatitis and sexually transmitted infections, 2021

WHO Global Elimination of HCV Targets

WHO Global Elimination of HCV Targets: Only 21% of ~ 58 million people with chronic HCV infection diagnosed

Percentage of hepatitis C infected persons diagnosed to end 2019

Percentage of hepatitis C infected persons treated to end 2019

Source: Global progress report on HIV, viral hepatitis and sexually transmitted infections, 2021

Hepatitis C- State of Affairs in the USA

Rosenberg ES et al. Jama Netw Open. 2018; 1e186371 National Academies of Sciences, Engineering and Medicine. A national strategy for the elimination of hepatitis B and C: Phase 2 report

New Cases of HCV are Actually Rising

Reported and estimated number of acute HCV cases- USA 2010-2018

https://www.hhs.gov/sites/default/files/Viral-Hepatitis-National-Strategic-Plan-2021-2025.pdf

Young People Disproportionate New Infections

Rate of reported acute hepatitis C, by age group- USA 2003-2018

1. CDC.gov. Updated May 14, 2021. Accessed October 26, 2023. https://www.cdc.gov/hepatitis/statistics/2019surveillance/HepC.htm

Risk Factors in Acute HCV Cases, 2017 USA

Substance Use Disorder in the United States

In 2016, more then 20 million Americans over 12 years old had a Substance Use Disorder in the Past Year

Department of Health and Human Services, Substance Abuse and Mental Health Services Administration

Two Intertwined Epidemics: HCV is a Consequence of Injection Drug Use

HCV Antibody prevalence among people who inject drugs (PWIDS) is 70-77%

1 of 3 PWIDs acquires HCV in their first year of injecting

Hagan H, et al, Am J Eidemiol. 2008; 168 (10): 1099-1109 2021 NIH National Institute on Drug Abuse Heroin Research Report

Each PWID with HCV infects ~20 other people within their first 3 years of infection

HCV Infection Rate Increases with Injection Frequency and Number of Partners

Each additional network partner increases incidence rate by 5.8-6.9 HCV infections per 100 PY

Increasing the frequency of infection from less than daily to daily or more increased the rate of HCV infection 67% (15.6-23.1 per 100 PY)

Delaying treatment in PWIDS prolongs the time during which they are infectious

Hellard M et al, Int J Drug Policy 2015: 26(10): 958-962; Rolls DA et al J Theor Biol 2012: 297: 73-87
High rates of New Cases in AI/NA

Rate of reported acute HCV, by race/ethnicity- United States, 2003-2018

https://www.hhs.gov/sites/default/files/Viral-Hepatitis-National-Strategic-Plan-2021-2025.pdf

15% of HCV Patients Have Compensated Cirrhosis

- Individuals screened from 2017-2019 by two large US lab companies
- Modified FIB-4 used to determine fibrosis stage

Results

- 98.4% GT1-3,
- 65% of GT3 were in PWID
- **15% of HCV patients cirrhotic**
- GT3 in patients with cirrhosis historically most difficult to cure
- Limitations: High risk patients such as prison not included, IVDU likely to be underrepresented

Cure-sustained virologic response (SVR12), defined as HCV RNA less than the lower limit of quantification (LLOQ) at 12 weeks after the end of treatment FIB-4=fibrosis-4, GT=genotype

1. Reau N. et al. Adv Ther. 2021;38(12):5777-5790; 2. Messina JP, et al. Hepatology; 2015;61:77-87; 3. Flamm S, et al. J Viral Hepat 2019;26:337-349

HCV by F-Score¹

HCV Remains Underdiagnosed and Undertreated

Cascade of Care in 2018

The number of persons alive or had or ever had HCV is estimated to be ~4 million in 2018 Chhatwal J et al. Presented at AASLD 2018, The Liver Meeting, Nov 9-13, San Francisco, CA Zibbell JE, et al Am J Public Health 2018; 108(2):175-181

Viral Hepatitis National Strategic Plan: 2021–2025 A Roadmap to Elimination

- The Office of the Assistant Secretary for Health (OASH) and its Office of Infectious Disease and HIV/ AIDS Policy (OIDP) of the U.S. Department of Health and Human Services (HHS)
- 5 Goals
- 8 Core Indicators of Success
 - 3 specifically related to HCV

Viral Hepatitis National Strategic Plan: 2021–2025 A Roadmap to Elimination

1	100
ſ	ուր
1	

Prevent new viral hepatitis infections

Improve viral hepatitis- related health outcomes of people with viral hepatitis

Reduce viral hepatitis- related disparities and health inequities

Improve viral hepatitis surveillance and data usage

Achieve integrated, coordinated efforts that address the viral hepatitis epidemics among all partners and stakeholders

HCV Core Plan Indicators: Reduce HCV Infections

Reduce acute HCV infections for 20% by 2025 and 90% at 2030

https://www.hhs.gov/sites/default/files/Viral-Hepatitis-National-Strategic-Plan-2021-2025.pdf

HCV Core Plan Indicators: Reduce HCV Infections

Estimated new HCV infections and annual targets by year

https://www.hhs.gov/sites/default/files/Viral-Hepatitis-National-Strategic-Plan-2021-2025.pdf

HCV Core Plan Indicators: Increase Clearance/Cure

Increase proportion of people who are cured of HCV to 58% by 2025 and 80% by 2030

https://www.cdc.gov/hepatitis/policy/npr/2023/NationalProgressReport-HepC-ReduceDeaths.htm

HCV Core Plan Indicators: Increase Clearance/Cure

https://www.cdc.gov/mmwr/volumes/72/wr/mm7226a3.htm#F1_down

HCV Core Plan Indicators: Reduce HCV Deaths

https://www.hhs.gov/sites/default/files/Viral-Hepatitis-National-Strategic-Plan-2021-2025.pdf

Hepatitis Core Plan Indicators: Reduce HCV Deaths

Observed 🦊 Annual Target* 🛛 Reset

Age Adjusted Rate of HCV Related deaths and annual targets for USA by year

https://www.cdc.gov/hepatitis/policy/npr/2023/NationalProgressReport-HepC-ReduceDeaths.htm

WHAT NOW? Eliminating Barriers and Challenges

STATES REMOVING HCV TREATMENT RESTRICTIONS

STATES ARE REMOVING HCV TREATMENT RESTRICTIONS¹

Majority of Patients Can Be Treated Regardless of Fibrosis Score

2014² 2023

		States with restrictions at any level	Description
0	Prior authorization criteria*	27 27	Between June 2022 and August 2023, prior authorizations were removed in Arizona, Colorado, Delaware, the District of Columbia, Florida, Hawaii, Illinois, Oklahoma, Oregon, Pennsylvania, and Texas
***	Prescribers [†]	4 29	States that absolutely prohibited nonspecialists from prescribing decreased by 86%
×	Sobriety†	37	Only 3 states still require abstinence Arkansas, Nebraska, North Dakota
••	F-scores	34	Arkansas is the only state with an F-score restriction remaining in 2023

Data am based on publicly available Medicaid coverage coterta for all 50 states, the District of Columbia, and Paerto Rico.

*Additional prior authorization requirements may apply for treatment experienced patients, treatment failure or reinfection. See state program information for more details. "This does not include all State Medicald restrictions Additional instructions may include aeboraty screening and counseling, varying abstinence time transes, and provider restrictions requiring prescribing by or in consultation with a specialist.

1. Hepatilis & State of Medicald Access. Updated August 2023. Accessed October 26, 2023. https://stateoffrepc.org/ 2. Hepatilis & State of Medicald Access. Accessed October 26, 2023. https://stateoffrepc.org/vp.content/uploade/2021/07/State-of-HepC_2017_FINAL.pdf

VEN: AN ALH INITIATIVE

Meet patients where they are

10 Outreach team testing and linkage to care

daily

- Needle exchange
- Rehab centers
- Prison rentry facilities
- Homeless camps
- Parks

VEN: AN ALH INITIATIVE

VEN: Outreach Across Arizona

- Northern Arizona
 - \Rightarrow Flagstaff
- Central Arizona
 - ☆ Peoria
 - ☆ Chandler
 - ☆ Mesa
- Southern Arizona Tucson

VEN Testing: 15-20% Ab Positive

VEN: Doubled Identification and Linkage to Care within 6 months of Inception

92% of patients with HCV RNA start treatment

98% of patients' treatment who start finish

SVR12 data pending

HCV Treatment as Prevention: Harm Reduction is Essential Component

The more PWIDs Treated, the Faster we Get to HCV Elimination

To do this, we must concomitantly scale up harm reduction measures

- Medication assisted treatment
- Syringe services
- Increased intensity of HCV management- eg Directly observed therapy
- Patient education and counseling
- Increased HCV treater workforce

HCV Elimination: Where are We

The New York Times

OPINION GUEST ESSAY

We Are Squandering One of the Most Important Medical Advances of the 21st Century

Nov. 28, 2023

Todd Heisler/The New York Times

Thank you!

PBC Therapeutics Update *New Drugs Coming Your Way Soon*

Raj Vuppalanchi, MD Professor of Medicine | Director of Hepatology Division of Gastroenterology and Hepatology <u>rvuppala@iu.edu</u> |@rajvuppalanchi

Open-label clinical trial LTSE	Phase 3 4 Placebo-controlled RCT		
Pros	Cons	Pros	Cons
Extended safety data	No control arm	Placebo-arm	Hard to recruit
Incremental efficacy data	Open-label	Confirms clinical benefit	
Offer IP to subjects previously randomized to the placebo arm		Clinical outcomes trial	
		Supports full regulatory approval	

Vuppalanchi R and Kowdley KV. The Evolving Paradigms and Treatments for Primary Biliary Cholangitis Aliment Pharmacol Ther. 2024 Jan;59(2):280-281.

FDA Designations of Phase 3 PPARs in PBC

	Orphan Drug Designation	Accelerated approval	Fast Track	Priority review	Breakthrough therapy
Elafibranor	Х	Х			Х
Seladelpar	Х	Х			X *
Saroglitazar	Х	Х	Х		

* Revised Breakthrough Therapy designation for pruritus with adults with or without cirrhosis

Safety Concerns with PPARs in PBC

• Renal

• Muscle

- \rightarrow myalgias
- \rightarrow rhabdomyolysis
- Liver
 - \rightarrow dose dependent toxicity
 - \rightarrow overlap syndrome with AIH

BEZURSO trial with Bezafibrate 400 mg once daily for 2 years

- Creatinine level \uparrow 5% (\downarrow 3% in the placebo group)
- Myalgia rate 20% (10% in the placebo group)
 - Rhabdomylosis with concomitant statin therapy (1 out of 50)
- ALT >5×ULN in 3 (1 in placebo group)
 - 2 developed overlap syndrome requiring steroids
 - 1 spontaneous resolution with drug discontinuation

N Engl J Med. 2018 Jun 7;378(23):2171-2181

Other safety concerns with fibrates	Warning Label
\rightarrow Cholelithiasis	→PBC
→Drug-drug interactions	\rightarrow Gall stones
\rightarrow Gastrointestinal	\rightarrow Concurrent use of MAO
→Allergic reactions	\rightarrow Pregnancy

PPARs for PBC: Search for Optimal Dose

PPARs for PBC - Efficacy

	F	Phase 2		Phase 3		
POISE criteria	n	EOS	Sample size	Early	EOS (52 weeks)	
Elafibranor 80 mg (N=45)	15	67% (12 weeks)	161 (ELA =108) ELATIVE	59% (13 weeks)	51%	
Soladolpar 10 mg (N=121)	55	67% (12 weeks)	193 (SEL: 128) RESPONSE	Unknown	62%	
			265 (SEL: 89) ENHANCE*	78% (12 weeks)	Terminated	
Saroglitazar 2 mg (N=37)	14	71% (12 weeks)	140 (SARO: 90) EPICS-III	Ongoing		
Bezafibrate 400 mg (N=100)			100 (BEZA: 50)	31% (24 months)		

*Patients were randomized 1:1:1 to oral seladelpar 5 mg (n=89), 10 mg (n=89), placebo (n=87) daily

Kowdley KV et al. N Engl J Med. 2023 Nov 13

Lower Efficacy Rates in Phase 3 compared to 2

Differentiators

Efficacy and Safety Profile

Mechanism of Action

Study Population

Convenience and Administration

Post-Market Surveillance

Labeling and Indication Expansion

Clinical Trial Data

Cost and Access

Brand and Marketing Campaigns

Patient Support Programs

1 – Complete Normalization of ALP

	F	Phase 2		Phase 3	
ALP normalization	n	EOS	Sample size	Early	EOS (52 Wks)
Elafibrinor 80 mg (N=45)	15	13% (12 weeks)	161 (ELA =108) ELATIVE	7% (13 weeks)	15%
Seladelpar 10 mg	55	31% (12 weeks) 33% (52 weeks)	193 (SEL: 128) RESPONSE	Not reported	25%
(N=121)			265 (SEL: 89) ENHANCE	27% (12 weeks)	N/A
Saroglitazar 2mg (N=37)	14	50% (12/16 weeks)	140 (SARO: 90) EPICS-III	Ongo	ing
Bezafibrate 400 mg (N=100)			100 (BEZA: 50)		67% (24 months)

 \rightarrow Rate of complete normalization of ALP could be a major differentiator

2 - Confirmatory Phase 3|4

Drug	Design	Sample size	Duration	Inclusion criteria	Efficacy
Elafibranor (Elfidence)	RCT DB	450	7 years	UDCA for at least 12 monthsCompensated cirrhosis included	Event free survival
Seladelpar (AFFIRM)*	RCT DB	192	3 years	Only compensated cirrhosisCTP class A or B	Event free survival
Seladelpar (IDEAL)	RCT DB	75	1 year	 UDCA for 12 months ALP x ULN and <1.67 x ULN 	ALP normalization
Saroglitazar	RCT DB	400	7 years	 UDCA for 6 months No cirrhosis: ALP ≥1.67 x ULN Cirrhosis: ALP >ULN 	Event free survival

* Prior exposure to seladelpar is an exclusion criteria

3 – Cirrhosis

Drug	Sample size	Phase	Duration	Inclusion criteria	Outcome
OCA 5 mg once wkly to twice weekly (up titrate)	22	4	48 weeks	CP-A, CP-B or CP-C	PK and safety
Elafibranor	30	1	1 dose	Cirrhosis with mild, moderate and severe HI of any etiology	PK and safety
Seladelpar 10 mg	24	1	28 days	CP-A, CP-A+PHT, CP-B or CP-C	PK and safety
Saroglitazar 1 and 2 mg	24	1	28 days	CP-A, CP-B or CP-C	PK and safety

CP-A and CP-B completed

4 – Open Label Clinical Trial LTSE

Drug	Sample size	Duration	Inclusion criteria	Comment
Seladelpar 5 mg and 10 mg (ASSURE)	106	5 years	Prior participation in SELA studyMELD <12	2-year data published
Elafibranor 80 mg	~ 161	5 years	 All subjects from ELATIVE (phase 3) will be rolled over 	
Saroglitazar 1mg	~ 180	5 years	Prior participation in SARO studyMELD <12	Interim analysis at 3 years

4 – Open Label Clinical Trial LTSE

Mayo M et al. Aliment Pharmacol Ther. 2024;59:186-200
5 - Pruritus

Drug	Effect on Pruritus	Instrument
Elafibrinor 80 mg	-1.93 vs1.15; Δ = -0.78; 95% Cl, -1.99 to 0.42; P = 0.20	WI-NRS
Seladelpar 10 mg	-3.2 vs1.7; difference, -1.5; P <0.005 (baseline NRS ≥ 4)	NRS
Saroglitazar 1mg	Unknown (baseline 5D itch score ≥12)	5D itch PBC-40

NRS: Numerical Rating Scale

5. Clinical Trials for Cholestatic Itch

	Interventions	Clinicaltrials.gov	Mechanism of action	Conditions	Age criteria	Sample size	Duration	Instrument used for Pruritus Assessment	
	Phase 2								
	EP547	NCT04510090	MrgprX4 antagonist	Cholestasis	18 to 80 years	58	6 weeks	WI-NRS	
		NCT05525520	5	PBC PSC	, j	58	6 weeks	WI-NRS	
	Difelikefalin	NCT03995212	kappa opioid receptor agonist	Cholestatic Pruritus		60	16 weeks	WI-NRS	
	Colesevelam	NCT00756171	Bile acid resin	Chronic liver disease	>18 years	38	3 weeks	Visual analogue scale	
	Volixibat	NCT04663308	IBAT inhibitor	PSC	>18 years	200	28 weeks	Adult ItchRO	
Negative	Volixibat	NCT05050136	IBAT inhibitor	PBC	>18 years	260	28 weeks	Adult ItchRO	
	Linerixibat	NCT02966834	IBAT inhibitor	PBC (GLIMMER)	18 to 80 years	147	16 weeks	MWDI on Numerical Rating Scale (NRS)	
	Maralixibat	NCT02057692	IBAT inhibitor	Alagille Syndrome	1 to 18 years	37	13 weeks	ItchRO [Obs]	
	Maralixibat	NCT02160782	IBAT inhibitor	Alagille Syndrome		31	48 weeks	ItchRO (Obs)	
	Phase 3								
	Odevixibat	NCT03566238	IBAT inhibitor	PFIC 1 and 2	0.5 to 18 years	62	24 weeks	Albiero Observer-reported outcome (ObsRO)	
	Odevixibat	NCT04674761	IBAT inhibitor	Alagille Syndrome	>0.5 years	63	24 weeks	Albireo ObsRO	
Recruiting	Maralixibat	NCT03905330	IBAT inhibitor	PFIC	1 to 17 years	93	26 weeks	ItchRO (Obs)	
	Linerixibat	NCT04950127	IBAT inhibitor	PBC (GLISTEN)	18 to 80 years	230	24 weeks	NRS	
	Bezafibrate	NCT02701166	PPAR agonist	PBC PSC SSC	>18 years	84	3 weeks	Itch intensity on a scale of 0-10 cms	
	PSC: Primary Sclerosing Cholangitis, PBC: Primary Biliary Cholangitis, SSC: Secondary Sclerosing Cholangitis, PFIC: Progressive Familial Intrahepatic Cholestasis, WI-NRS: Worst Itch Numeric Rating Scale, PPAR: peroxisome proliferator-activated receptors, IBAT inhibitor: Ileal Bile Acid Transporter inhibitor, MWDI: mean worst daily itch score								

6. Lipids

7.Safety

4 (3.4%) discontinued for \uparrow CK (none in placebo)

- 2 were on statin
- 1 had CKD
- 1 had autoimmune thyroiditis2 of the 4 had myalgias

All cases of \uparrow ALT were reversible after discontinuation

advanced cirrhosis and concomitant statin

2 deaths receiving elafibranor (1.9%)

- 1 postoperative complications
- 1 biliary sepsis and acute kidney injury (had cirrhosis)

Table S6. Summary of all serious treatment-emergent adverse events*

Jun farmer of Tarmer	Elafibranor (N=108)	Placebo (N=53)		
ferred Term Acute kidney injury Hip fracture Abdominal hernia Appendicitis Ascites Asthma Biliary sepsis Blood bilirubin increased Cardiac arrest Cardiac arrest Cardiac failure Cholecystitis acute Crohn's disease Edema peripheral Hemorrhagic stroke Hypervolemia Multiple fractures Multiple organ dysfunction syndrome Osteonecrosis Parkinsonism Pneumonia Pulseless electrical activity Rhabdomyolysis Retroperitoneal hematoma	n (%)†			
Acute kidney injury	3 (2.8)	1 (1.9)		
Hip fracture	2 (1.9)	0(0)		
Abdominal hernia	1 (0.9)	0(0)		
Appendicitis	1 (0.9)	0(0)		
-> Ascites	1 (0.9)	0 (0)		
Asthma	1 (0.9)	0(0)		
Biliary sepsis	1 (0.9)	0(0)		
Blood bilirubin increased	1 (0.9)	0 (0)		
Cardiac arrest	1 (0.9)	0 (0)		
Cardiac failure	1 (0.9)	0(0)		
Cholecystitis acute	1 (0.9)	0(0)		
Crohn's disease	1 (0.9)	0 (0)		
Edema peripheral	1 (0.9)	0 (0)		
Hemorrhadic stroke	1 (0,9)	0 (0)		
Hypervolemia	1 (0.9)	o (o)		
Multiple fractures	1 (0.9)	0 (0)		
Multiple organ dysfunction syndrome	1 (0.9)	o (o)		
Osteonecrosis	1 (0.9)	0 (0)		
Parkinsonism	1 (0.9)	0 (O)		
Pneumonia	1 (0.9)	ο (ο)		
Pulmonary embolism	1 (0.9)	0 (0)		
Pulseless electrical activity	1 (0.9)	0 (0)		
Rhabdomvolvsis	1 (0.9)	o (o)		
Retroperitoneal hematoma	1 (0.9)	0 (0)		
Sudden hearing loss	1 (0.9)	o ĉoj		
Tremor	1 (0.9)	0 (0)		
Anxiety	0(0)	1 (1.9)		
Cataract	0 (0)	1 (1.9)		
COVID-19	0 (0)	1 (1.9)		
Invasive ductal breasts carcinoma	0 (0)	1 (1.9)		
Pain	0 (0)	1 (1.9)		
Papillary thyroid cancer	0 (0)	1 (1.9)		
Procedural pain	0 (0)	1 (1.9)		
Syncope	0 (0)	1 (1.9)		
Urinary tract infection	0 (0)	1 (1.9)		

7.Safety and Tolerability Data from LTSE

During 2nd year of LTSE

4 subjects discontinued due to safety

- 1 subject met treatment discontinuation criteria due to progression of PBC (severe ductopenia noted on a post-treatment biopsy)
- 1 subject had grade 2 increase in total bilirubin and AST but causality attributed to rheumatoid arthritis and NSAIDs. Abnormalities resolved upon discontinuation of seladelpar

 \rightarrow Tolerabililty- not much of a concern

8. Regression of fibrosis

Currently, elafibranor and seladelpar do not have histology as part of phase 3 or open label clinical trial LTSE

9. OCA + BZF Combination

- Increased efficacy
- Requires 400mg BZF
- No OCA arm

OCA 5-10 mg + BZF 400 mg Induced a Biochemical Remission in 58% of Subjects Normalization Across All Surrogates 100-80 **Biochemical remission:** ALP, GGT, ALT, AST 60 a All ≤ULN 6 AND 40 Total bilirubin ≤0.6x ULN 20 BZF 400 mg OCA 5-10 mg OCA 5-10 mg BZF 200 mg (n=16) + BZF 200 mg (n=15)+ BZF 400 mg (n=16) (n=12) Upts are moven as LS thear visions a standard error of the mean PEASL CONGRESS

OCA 5-10 mg + BZF 400 mg Induced a Rapid and Greater Normalization of ALP Relative to BZF Through Week 12

9. OCA + BZF Combination

- Increased tolerability
- Improved lipid effect
- BZF 400 mg

Summary of Adverse Events Through Week 12

All groups have comparable adverse event rates

	BZF 200 mg (n=16) N (%)	OCA 5-10 mg + BZF 200 mg (n=16) N (%)	BZF 400 mg (n=15) N (%)	OCA 5-10 mg + BZF 400 mg (n=15) N (%)
Subjects with TEAE	8 (50.0)	11 (68.8)	12 (80.0)	9 (60.0)
Pruritus	4 (25.0)	4 (25.0)	3 (20.0)	2 (13.3)
Serious TEAEs	0	0	0	1 (6.7) ^a
TEAE leading to discontinuation	0	0	0	1 (6.7) ⁿ
TEAEs leading to death	0	0	0	0

Pruritus event rate in the combination groups of OCA 5-10 mg + BZF was 19.4%
No difference in Gastrointestinal or Musculoskeletal adverse events between groups

*1 event of pruritus led to discontinuation from the study. Abbreviations B2F bezahmin: ICA students and TEAEs material-investigat adverse works.

Venna, Buthia

2023 17

OCA 5-10 mg + BZF 400 mg Induced a Rapid and Greater Change in Cholesterol and LDL Cholesterol Relative to BZF Through Week 12

Key Takeaways

- Robust options for 2nd line treatment
- Efficacy probably in the similar range
- Safety signals emerging
 - Myalgias and rhabdomyolysis
 - in those with cirrhosis | CKD | concomitant statin
 - Hepatotoxicity -- jury is out there
- Field is moving
 - from POISE criteria to complete normalization of ALP
 - from "not worsening pruritus" to "improvement in pruritus"
 - non-cirrhotic to compensated cirrhosis
 - improvement in sleep and quality of life

ARIZONA

LIVER

Genetic Cholestasis for the Adult Provider

- Naim Alkhouri, MD
- Chief Medical Officer
- Director of the Steatotic Liver Program
- Arizona Liver Health (ALH)
- Chandler, AZ

Objectives

- Describe the spectrum of PFIC in adults and the clinical presentations
- Discuss the role of genetic testing/Cholestasis Panel in adult patients with unexplained cholestatic liver disease.
- Discuss new therapeutic options for pruritus for patients with genetic cholestasis.
- @AlkhouriNaim

There is More to Chronic Cholestatic Liver Diseases than PBC and PSC

Defective hepatic bile formation leads to intrahepatic cholestasis, a group of heterogeneous liver diseases¹

 Commonly recognized forms of intrahepatic cholestasis include primary sclerosing cholangitis (PSC) or primary biliary cholangitis (PBC); however, in many patients, a clear diagnosis is difficult to confirm²

Progressive familial intrahepatic cholestasis (PFIC) is a severe form of cholestatic liver disease caused by genetic variants that affect the transport of biliary components and canalicular membrane stability^{1,2} • The estimated incidence of PEIC is 1 in every EQ 000 to 100 000 births³

The estimated incidence of PFIC is 1 in every 50,000 to 100,000 births³

While PFIC commonly presents in the first months of life, it is now evident that variants in PFIC genes *ABCB4*, *ABCB11*, and *ATP8B1* can contribute to later onset forms of the disease^{1,2}

 ABCB4/MDR3-related disease can present in adulthood as late-onset PFIC 3 with biliary fibrosis and cirrhosis¹

1. Dröge C et al. *Explor Dig Dis*. 2023;2:34-43. 2. Nayagam JS et al. *Hepatol Commun*. 2022;6(10):2654-2664.

Progressive Familial Intrahepatic Cholestasis: PFIC

- Heterogenous group of recessive disorders
- PFIC1: FIC1 deficiency
 - Important for PL and bile salt transport/ regulate expression of other transporters (BSEP)
- PFIC2: BSEP deficiency
 - -Main transporter for bile salts
- PFIC3: MDR3 deficiency

Key Clinical Features

	PFIC1	PFIC2	PFIC3
Feature	ATP8B1	ABCB11	ABCB4
Direct hyper bilirubinemia	Birth – 6m	Birth – 6m	Birth – adulthood
GGT	LOW	LOW	HIGH
Earliest time to cirrhosis	Late childhood and adolescence	Early infancy	Any age
Extrahepatic Sx	Diarrhea , Hearing Loss, Pancreatitis, Pneumonia	NO	NO
Pruritus	YES	YES	YES/NO
Cholelithiasis	NO	YES	YES (Intrahepatic)
Cancer	?	НСС	HCC & CCA (teens +)

Adapted from: Morotti RA, Suchy FJ, Magid MS. Progressive familial intrahepatic cholestasis (PFIC) type 1, 2, and 3: a review of the liver pathology findings. *Semin Liver Dis*. 2011 Feb;31(1):3–10.

The Long and Difficult Diagnostic Journey for Some Adults with PFIC

Female patient with no family history of gallstone disease, ICP, or liver disease

Age 20

First experienced cholestatic liver disease symptoms, namely **abdominal pain**, which was **diagnosed as gallstones**

Mid-30s

Underwent
 cholecystectomy
 due to recurrent
 symptoms

 Hereditary disease not suspected. No regular follow-ups implemented

~Age 60: PFIC diagnosis

- Abnormal labs: elevated sBA (2.3x ULN), ALT (1.9x ULN), AST (1.5x ULN), GGT (7.4x ULN), and ALP (1.7x ULN)
- Bilirubin and liver function tests normal
- Viral hepatitis, autoimmune liver disease, PSC, PBC excluded. Hereditary cholestasis suspected
- 40 years after symptom onset, whole-exome sequencing showed heterozygous missense ABCB4 variant, with clinical phenotype of ABCB4/MDR3-related low phospholipid-associated cholelithiasis (LPAC)

Dröge C et al. Explor Dig Dis. 2023;2:34-43.

PFIC Variants are Frequently Identified in Adults with Unexplained Liver Disease

A large cohort of 356 patients with adult-onset liver disease and a suspected genetic contribution were screened for 3 PFIC genes

of patients had ≥1 potentially pathogenic variant in genes coding for the proteins FIC1, BSEP, or MDR3

	FIC1 <i>(ATP8B1)</i>	BSEP <i>(ABCB11)</i>	MDR3 <i>(ABCB4)</i>
CLINICAL PRESENTATION*	Chronic liver disease, liver disease of alternate cause	Pregnancy- associated liver dysfunction, acute/episodic cholestasis	Chronic liver disease, pregnancy- associated liver dysfunction
HISTOLOGY			
Number of histological samples	16	12	20
Biliary disease, n (%)	7 (44%)†	4 (33%)	16 (80%)†
Acute or cholestatic hepatitis, n (%)	4 (25%) [‡]	7 (58%) [‡]	3 (15%)
Advanced fibrosis, n (%)	10 (63%)	1 (8%)	9 (45%)

Nayagam JS et al. Hepatol Commun. 2022;6(10):2654-2664.

Case 2: 28-Year-Old Female With Elevated Liver **Enzymes and history of ICP/Cholelithiasis**

Albumin

HP	: 28 y.o. F presented with elevated liver	LABS:		
enz	zymeś.	Conj. bilirubin		1.1
PE:	Unremarkable	Total bilirubin		1.8
PM	IHx:	ALT		127
-	2016: Elevated liver enzymes and RUQ pain \rightarrow	AST		66
	Dx of NAFLD and biliary sludge.	GGT		122
-	2018: Elevated liver enzymes and severe	Hb	13	
	\rightarrow Diagnosis of ICP \rightarrow Labor induction.	WBC	7	
_	2019: Enisodes of severe pruritus, no relief	Plts	306	k
	with cholestyramine \rightarrow Lap. chole.	ALK PHOS	197	

2020-2022: Several episodes of pruritus.

Viral/autoimmune/metabolic liver disease work up negative

RAD: U/S – Normal. S/p cholecystectomy

4.0

VCTE: LSM (kPa) and CAP (dB/m)

Utilization of Genetic Testing in Hepatology

- Roles for Panels & Whole Exome Sequencing
- VOUS are common and may be significant
- Compound heterozygous and modifier genes
- Human variant databases are open, global & growing
- New diseases are being discovered through NGS
- <u>Timely genetic</u> testing may be cost effective and lead to early implementation of effective therapies

CHOLESTASIS GENETIC PANEL: 77-GENE TESTING PANEL TO HELP IDENTIFY GENETIC CAUSES OF CHOLESTASIS

Travere Therapeutics (formerly Retrophin) has partnered with PreventionGenetics to offer a 77-gene cholestasis panel.⁺ This resource is provided at no cost to patients, physicians, or payers.⁺ It is easy to use and detects an array of potential causes of cholestasis or jaundice, many of which may be life threatening.

"The 66-gene cholestasis panel that was performed through EGL Genetics is now being run through PreventionGenetics as a 77-gene panel, This test is abili available at no-cost to qualifying patients.

HOW TO ORDER THE CHOLESTASIS GENETIC PANEL

LOG IN TO CHEER MIT	
Username:	
Password:	
Next time log me in automatically.	
LOG W	
CREATE NEW ACCOUNT	1
(US physicians Only)	
Username:	
Password:	

www.testcholestasis.com

Test Code: 13371

77 Genes

ABCB11, ABCB4, ABCC2, ABCC5, ABCG8, ACOX2, AKRIC4, AKRIDI, ALDOB, AMACR, ATP8B1, BAAT, CC2D2A, CFTR, CLDN1, CYP27A1, CYP7A1, CYP7B1, DCDC2, DGUOK, DHCR7, EHHADH, FAH, GNAS, GPBARI, HNFIB, HSD17B4, HSD3B7, INVS, JAG1, KMT2D, LIPA, MKS1, MPV17, MYO5B, NOTCH2, NPC1, NPC2, NPHP1, NPHP3, NPHP4, NR1H4, PEX1, PEX10, PEX11B, PEX12, PEX13, PEX14, PEX16, PEX19, PEX2, PEX26, PEX3, PEX5, PEX6, PEX7, PKDILI, PKHDI, POLG, SCP2, SERPINAI, SLC10A1, SLC10A2, SLC25A13, SLC27A5, SLC51A, SLC51B, SLCO1B3, SMPD1, TALDO1, TJP2, TMEM216, TRMU, UGTIAI, UTP4, VIPAS39, VPS33B

Genetic Testing Results

Sequence Variant(s):

Gene, Transcript	Mode of Inheritance, Gene OMIM	DNA Variants, Predicted Effects, Zygosity	ClinVar ID	Highest Allele Frequency in a gnomAD Population	In Silico Missense Predictions	Interpretation
<i>ABCB4,</i> NM_000443.3	AD, AR, 171060	c.1634G>A, p.Arg545His, Heterozygous	Not listed in ClinVar	Not Present	Damaging	LIKELY PATHOGENIC

ABCB4 VARIANT INFORMATION:

This patient is heterozygous in the *ABCB4* gene for a sequence variant defined as c.1634G>A, which is predicted to result in the amino acid substitution p.Arg545His. This variant was reported in the heterozygous state, compound heterozygous state and homozygous state in patients with <u>low phospholipid associated</u> cholelithiasis, intrahepatic cholestasis of pregnancy or progressive familial intrahepatic cholestasis (Poupon et al 2013. PubMed ID: 23533021; Wang Z et al 2016. PubMed ID: 26796082; Dröge C et al 2017. PubMed ID:

Molecular Mechanisms Underlying Cholestasis and Lithogenecity Associated with ABCB4

Disease Manifestations Associated with Heterozygous ABCB4 Variants

	LPAC	ICP
Underlying genetic defect in ABCB4	Heterozygous	Heterozygous
Age at presentation	Early adulthood (<40 years)	Pregnancy (2 nd /3 rd trimester)
Clinical presentation	Cholelithiasis, biliary colic	Gestational pruritus
Disease course	Benign	Benign
Complications	Jaundice, cholangitis, biliary pancreatitis, intrahepatic stones	Premature birth, foetal asphyxia, meconium-stained amniotic fluid
Treatment	UDCA, cholecystectomy	UDCA
Differential diagnosis	Primary sclerosing cholangitis, Caroli's disease (congenital dilation of intrahepatic bile ducts)	Acute fatty liver of pregnancy, HELLP syndrome, Budd-Chiari- syndrome

Transporter Variants → Hepatotoxicity

Mutations and polymorphisms in the bile salt export pump and the multidrug resistance protein 3 associated with drug-induced liver injury

Carmen Lang^{a,*}, Yvonne Meier^{a,*}, Bruno Stieger^a, Ulrich Beuers^c, Thomas Lang^d, Reinhold Kerb^d, Gerd A. Kullak-Ublick^{a,b}, Peter J. Meier^a and Christiane Pauli-Magnus^a

Objectives Increasing evidence suggests that a genetically determined functional impairment of the hepatocellular efflux transporters bile salt export pump (BSEP, *ABCB11*) and multidrug resistance protein 3 (MDR3, *ABCB4*) play a pathophysiological role in the development of drug-induced liver injury. The aim of this study was therefore to describe the extent of genetic variability in *ABCB11* and *ABCB4* in patients with drug-induced liver injury and to *in vitro* functionally characterize newly detected *ABCB11* mutations and polymorphisms.

hepatocellular injury patients and healthy controls, respectively; P < 0.05). The in-vitro transport activity of the V444A and the D676Y BSEP constructs was similar, whereas the G855R mutation was nonfunctional.

Conclusion In summary, our data support a role of *ABCB11* and *ABCB4* mutations and polymorphisms in drug-induced cholestasis. Genotyping of selected patients with acquired cholestasis might help to identify individuals with a genetic predisposition. *Pharmacogenetics and Genomics* 17:47–60 © 2007 Lippincott Williams & Wilkins.

Wide Spectrum of ABCB4 (MDR3) Deficiency

- 20 patients from 12 families were included.
- 5 were homozygotes
- 10 were heterozygotes (one mutation)
- 5 were compoundheterozygotes (two mutations)

Falcao D, et al. Dig I	Liver Dis. 2022	Feb;54(2):221-227.

PatientN°	Family Relationshipto index case	Gender	Age (years)	LPA Csyndrome	Cholecystectomy (years)	ICP(N° of episodes)	DILI
P1	A Index case	F	46	Yes	17	2	res
P2	A Brother	м	49	Yes	44	<u>е</u>	No
P3	A Mother	F	69	No	No	No	No
P4	A Daughter	F	23	No	No	~	No
P5	A Daughter	F	21	No	No	-	No
P6	A Niece	F	23	No	No		No
P7	A Niece	F	17	No	Waiting for surgery	1	No
P8	B Index case	F	38	Yes	23	2	No
P9	<i>B</i> Brother	М	34	Yes	22	2	No
P10	C Index case	F	74	Yes	33	1	No
P11	D Index case	F	35	Yes	23	2	No
P12	E Index case	F	51	No	No	1	No
P13	F Index case	F	57	No	No	×	Yes
P14	G Index case	М	42	No	No	-	No
P15	G Uncle	м	74	No	No	2	No
P16	H Index case	F	65	Yes	40	No	No
P17	I Index case	F	23	Yes	17	No	No
P18	J Index case	м	48	No	No	<u> </u>	No
P19	K Index case	м	62	No	No	A	No
P20	L Index case	F	32	No	29	No	No

Wide Spectrum of ABCB4 (MDR3) Deficiency

19 y.o. M. presented with elevated liver tests (cholestatic pattern)
→ Negative w/u, was started on Urso and lost to f/u

40 y.o. asymptomatic sister with intrahepatic cholestasis (LPAC)

18 years later presented w decompensation \rightarrow Homozygous variant in exon 28 of ABCB4 – c.3768_3769delAG

Stättermayer AF et al. J of Hep. 2020 vol 73. 651–663

Wide Spectrum of ABCB4 (MDR3) Deficiency

GASTROENTEROLOGY 2001;120:1448-1458

The Wide Spectrum of Multidrug Resistance 3 Deficiency: From Neonatal Cholestasis to Cirrhosis of Adulthood

EMMANUEL JACQUEMIN,* J. MARLEEN L. DE VREE,* DANIÈLE CRESTEIL,* ETIENNE M. SOKAL,[§] EKKEHARD STURM,^I MICHELINE DUMONT,[¶] GEORGE L. SCHEFFER,[#] MARIANNE PAUL,[†] MARTIN BURDELSKI,^I PITER J. BOSMA,[†] OLIVIER BERNARD,* MICHELLE HADCHOUEL,* and RONALD P. J. OUDE ELFERINK[†]

*Hepatology Unit, Department of Pediatrics, and INSERM U 347, Höpital de Bicètre, Le Kremlin Bicètre, France; *Department of Gastroenterology and Liver Diseases, Academic Medical Center, and *Department of Pathology, Free University, Amsterdam, The Netherlands; *Department of Pediatrics, Université Catholique de Louvain, Cliniques St Luc, Bruxelles, Belgium; IDepartment of Pediatric Gastroenterology and Nutrition, Children's Hospital, University Hospital Eppendorf, Hamburg, Germany; and fINSERM U 481, Höpital

MRCP: Intrahepatic stone

MRCP- Diffuse abnormalities

Certain patient presentations of progressive cholestasis Should Make You Test for PFIC with the Genetic Cholestasis Panel

Idiopathic cholestasis

Consider reassessing your patient if signs of cholestasis manifest without apparent cause^{1,2}

Cholestasis with pruritus or unusual presentation

Consider reassessing if your patient is receiving care for another liver disease but has unusual symptoms, including

- Small duct PSC³
- AMA negative PBC^{4,5}
- MASLD with pruritus^{6*}
- Lean MASLD without metabolic syndrome^{6*}
- Lean MASH with pruritus and without metabolic syndrome^{6*}

Secondary cholestasis triggered by liver issue

Consider reassessing if symptoms of cholestatic pruritus arise in patients who have recently experienced liver issues, including

- All women with history of ICP³
- Drug-induced cholestasis³
- Hormone-induced cholestasis triggered by birth control, menopause, etc^{3,7}

History of complicated gallstones

Consider reassessing if your patient has a complicated history of gallstones, including

- Intrahepatic gallstones³
- Very strong family history of gallstones and incident at a young age^{8,9}
- LPAC leading to stones in the gallbladder or liver¹⁰

1. Vitale G et al. *J Gastroenterol*. 2018;53(8):945-958. **2.** Aamann L et al. *Scand J Gastroenterol*. 2018;53(3):305-311. **3.** Hilscher MB et al. *Mayo Clin Proc*. 2020;95(10):2263-2279. **4.** Chascsa DM et al. *Clin Liver Dis*. 2018;22(3):589-601. **5.** Zen Y et al. In: Burt AD et al, eds. *MacSween's Pathology of the Liver*. 7th ed. 2018:515-593. **6.** Boehlig A et al. *Biomedicines*. 2022;10(2):1-10. **7.** Zu Y et al. *Front Pharmacol*. 2021;12:761255.

8. Sarin SK et al. Hepatology. 1995;22(1):138-141. 9. Hsing AW et al. Int J Cancer. 2007;121(4):832-838. 10. Goubault P et al. J Visc Surg. 2019;156(4):319-328.

Pruritus in patients with PFIC can be debilitating and affect many aspects of life^{1,2}

Even when liver function is satisfactory, the debilitating nature of cholestatic pruritus may necessitate transplant

1. Srivastava A. J Clin Exp Hepatol. 2014;4(1):25-36. 2. Mehl A et al. World J Transplant. 2016;6(2):278-290

Historic Treatment Options for Pruritus Caused by Cholestatic Liver Diseases

Goals of Treatment^{1,2}

- Provide relief from cholestatic pruritus
- Improve nutritional status and correct vitamin deficiencies
- Manage advanced disease complications to help delay liver transplant

Nutritional support, vitamin and fatty acid supplementation¹

Symptomatic relief of PFIC, including²⁻⁴

Opiate antagonists

• Bile acid sequestrants

- Hydrophilic bile acids
- Antimycobacterials
- Antihistamines

Surgical therapy²

- Biliary diversion
- Liver transplantation

Novel Treatment Strategies – Pharmacologic Interruption of Enterohepatic Circulation

ASBT, apical sodium-dependent bile acid transporter; CYP7A1, cholesterol 7a-hydroxylase; FGF, fibroblast growth factor; FXR, farnesoid X receptor.

1. Keller B, et al. Poster 55 presented at the Falk Symposium 194. Oct 8–9, 2014. Freiburg, Germany;

2. Al-Dury S, et al. Sci Rep. 2018; 8:6658; 3. Hegade VS, et al. Lancet. 2017; 389:1114-23;

4. Mayo MJ, et al. Hepatol Commun. 2019; 3:365–81; 5. Shneider BL, et al. Hepatol Comms. 2018; 2:1184–98.

Change in Scratching Score with Odevixibat: PEDFIC 1 and PEDFIC 2 Trials

Thompson RJ et al. Lancet Gastroenterol Hepatol. 2022;7(9):830-842.

Take Home Messages

- The spectrum of PFIC in adults is wide and <u>should be considered in any</u> <u>cases of unexplained liver disease.</u>
- Have a low threshold to obtain Genetic testing/<u>Cholestasis Panel</u> is available for free to our patients.
- <u>Novel therapeutic agents</u> for cholestatic pruritus are now available and FDA-approved.
- @AlkhouriNaim

ARIZONA

LIVER

Genetic Cholestasis for the Adult Provider

- Naim Alkhouri, MD
- Chief Medical Officer
- Director of the Steatotic Liver Program
- Arizona Liver Health (ALH)
- Chandler, AZ

Objectives

- Describe the spectrum of PFIC in adults and the clinical presentations
- Discuss the role of genetic testing/Cholestasis Panel in adult patients with unexplained cholestatic liver disease.
- Discuss new therapeutic options for pruritus for patients with genetic cholestasis.
- @AlkhouriNaim

There is More to Chronic Cholestatic Liver Diseases than PBC and PSC

Defective hepatic bile formation leads to intrahepatic cholestasis, a group of heterogeneous liver diseases¹

 Commonly recognized forms of intrahepatic cholestasis include primary sclerosing cholangitis (PSC) or primary biliary cholangitis (PBC); however, in many patients, a clear diagnosis is difficult to confirm²

Progressive familial intrahepatic cholestasis (PFIC) is a severe form of cholestatic liver disease caused by genetic variants that affect the transport of biliary components and canalicular membrane stability^{1,2} • The estimated incidence of PEIC is 1 in every EQ 000 to 100 000 births³

The estimated incidence of PFIC is 1 in every 50,000 to 100,000 births³

While PFIC commonly presents in the first months of life, it is now evident that variants in PFIC genes *ABCB4*, *ABCB11*, and *ATP8B1* can contribute to later onset forms of the disease^{1,2}

 ABCB4/MDR3-related disease can present in adulthood as late-onset PFIC 3 with biliary fibrosis and cirrhosis¹

1. Dröge C et al. *Explor Dig Dis*. 2023;2:34-43. 2. Nayagam JS et al. *Hepatol Commun*. 2022;6(10):2654-2664.
Progressive Familial Intrahepatic Cholestasis: PFIC

- Heterogenous group of recessive disorders
- PFIC1: FIC1 deficiency
 - Important for PL and bile salt transport/ regulate expression of other transporters (BSEP)
- PFIC2: BSEP deficiency
 - -Main transporter for bile salts
- PFIC3: MDR3 deficiency

Key Clinical Features

	PFIC1	PFIC2	PFIC3
Feature	ATP8B1	ABCB11	ABCB4
Direct hyper bilirubinemia	Birth – 6m	Birth – 6m	Birth – adulthood
GGT	LOW	LOW	HIGH
Earliest time to cirrhosis	Late childhood and adolescence	Early infancy	Any age
Extrahepatic Sx	Diarrhea , Hearing Loss, Pancreatitis, Pneumonia	NO	NO
Pruritus	YES	YES	YES/NO
Cholelithiasis	NO	YES	YES (Intrahepatic)
Cancer	?	НСС	HCC & CCA (teens +)

Adapted from: Morotti RA, Suchy FJ, Magid MS. Progressive familial intrahepatic cholestasis (PFIC) type 1, 2, and 3: a review of the liver pathology findings. *Semin Liver Dis*. 2011 Feb;31(1):3–10.

The Long and Difficult Diagnostic Journey for Some Adults with PFIC

Female patient with no family history of gallstone disease, ICP, or liver disease

Age 20

First experienced cholestatic liver disease symptoms, namely **abdominal pain**, which was **diagnosed as gallstones**

Mid-30s

Underwent
 cholecystectomy
 due to recurrent
 symptoms

 Hereditary disease not suspected. No regular follow-ups implemented

~Age 60: PFIC diagnosis

- Abnormal labs: elevated sBA (2.3x ULN), ALT (1.9x ULN), AST (1.5x ULN), GGT (7.4x ULN), and ALP (1.7x ULN)
- Bilirubin and liver function tests normal
- Viral hepatitis, autoimmune liver disease, PSC, PBC excluded. Hereditary cholestasis suspected
- 40 years after symptom onset, whole-exome sequencing showed heterozygous missense ABCB4 variant, with clinical phenotype of ABCB4/MDR3-related low phospholipid-associated cholelithiasis (LPAC)

Dröge C et al. Explor Dig Dis. 2023;2:34-43.

PFIC Variants are Frequently Identified in Adults with Unexplained Liver Disease

A large cohort of 356 patients with adult-onset liver disease and a suspected genetic contribution were screened for 3 PFIC genes

of patients had ≥1 potentially pathogenic variant in genes coding for the proteins FIC1, BSEP, or MDR3

	FIC1 <i>(ATP8B1)</i>	BSEP <i>(ABCB11)</i>	MDR3 <i>(ABCB4)</i>
CLINICAL PRESENTATION*	Chronic liver disease, liver disease of alternate cause	Pregnancy- associated liver dysfunction, acute/episodic cholestasis	Chronic liver disease, pregnancy- associated liver dysfunction
HISTOLOGY			
Number of histological samples	16	12	20
Biliary disease, n (%)	7 (44%)†	4 (33%)	16 (80%)†
Acute or cholestatic hepatitis, n (%)	4 (25%) [‡]	7 (58%) [‡]	3 (15%)
Advanced fibrosis, n (%)	10 (63%)	1 (8%)	9 (45%)

Nayagam JS et al. Hepatol Commun. 2022;6(10):2654-2664.

Case 2: 28-Year-Old Female With Elevated Liver **Enzymes and history of ICP/Cholelithiasis**

HP	I: 28 y.o. F presented with elevated liver	LABS:		
en	zymeś.	Conj. bilirubin	1	.1
PE	: Unremarkable	Total bilirubin	1	.8
ΡN	1Hx:	ALT	1	27
-	2016: Elevated liver enzymes and RUQ pain $ ightarrow$	AST	6	6
	Dx of NAFLD and biliary sludge.	GGT	1	22
-	2018: Elevated liver enzymes and severe	Hb	13	
	\rightarrow Diagnosis of ICP \rightarrow Labor induction	WBC	7	
	2010: Enicodos of sovoro pruritus, no roliof	Plts	306k	
-	with cholestyramine \rightarrow Lap. chole.	ALK PHOS	197	
_	2020-2022: Several enisodes of pruritus	Albumin	4.0	

2020-2022: Several episodes of pruritus.

Viral/autoimmune/metabolic liver disease work up negative

RAD: U/S – Normal. S/p cholecystectomy

VCTE: LSM (kPa) and CAP (dB/m)

Utilization of Genetic Testing in Hepatology

- Roles for Panels & Whole Exome Sequencing
- VOUS are common and may be significant
- Compound heterozygous and modifier genes
- Human variant databases are open, global & growing
- New diseases are being discovered through NGS
- <u>Timely genetic</u> testing may be cost effective and lead to early implementation of effective therapies

CHOLESTASIS GENETIC PANEL: 77-GENE TESTING PANEL TO HELP IDENTIFY GENETIC CAUSES OF CHOLESTASIS

Travere Therapeutics (formerly Retrophin) has partnered with PreventionGenetics to offer a 77-gene cholestasis panel.⁺ This resource is provided at no cost to patients, physicians, or payers.⁺ It is easy to use and detects an array of potential causes of cholestasis or jaundice, many of which may be life threatening.

"The 66-gene cholestasis panel that was performed through EGL Genetics is now being run through PreventionGenetics as a 77-gene panel, This test is abili available at no-cost to qualifying patients.

HOW TO ORDER THE CHOLESTASIS GENETIC PANEL

LOG IN TO CHEER MIT	
Username:	
Password:	
Next time log me in automatically.	
LOG W	
CREATE NEW ACCOUNT	1
(US physicians Only)	
Username:	
Password:	

www.testcholestasis.com

Test Code: 13371

77 Genes

ABCB11, ABCB4, ABCC2, ABCC5, ABCG8, ACOX2, AKRIC4, AKRIDI, ALDOB, AMACR, ATP8B1, BAAT, CC2D2A, CFTR, CLDN1, CYP27A1, CYP7A1, CYP7B1, DCDC2, DGUOK, DHCR7, EHHADH, FAH, GNAS, GPBARI, HNFIB, HSD17B4, HSD3B7, INVS, JAG1, KMT2D, LIPA, MKS1, MPV17, MYO5B, NOTCH2, NPC1, NPC2, NPHP1, NPHP3, NPHP4, NR1H4, PEX1, PEX10, PEX11B, PEX12, PEX13, PEX14, PEX16, PEX19, PEX2, PEX26, PEX3, PEX5, PEX6, PEX7, PKDILI, PKHDI, POLG, SCP2, SERPINAI, SLC10A1, SLC10A2, SLC25A13, SLC27A5, SLC51A, SLC51B, SLCO1B3, SMPD1, TALDO1, TJP2, TMEM216, TRMU, UGTIAI, UTP4, VIPAS39, VPS33B

Genetic Testing Results

Sequence Variant(s):

Gene, Transcript	Mode of Inheritance, Gene OMIM	DNA Variants, Predicted Effects, Zygosity	ClinVar ID	Highest Allele Frequency in a gnomAD Population	In Silico Missense Predictions	Interpretation
<i>ABCB4,</i> NM_000443.3	AD, AR, 171060	c.1634G>A, p.Arg545His, Heterozygous	Not listed in ClinVar	Not Present	Damaging	LIKELY PATHOGENIC

ABCB4 VARIANT INFORMATION:

This patient is heterozygous in the *ABCB4* gene for a sequence variant defined as c.1634G>A, which is predicted to result in the amino acid substitution p.Arg545His. This variant was reported in the heterozygous state, compound heterozygous state and homozygous state in patients with <u>low phospholipid associated</u> cholelithiasis, intrahepatic cholestasis of pregnancy or progressive familial intrahepatic cholestasis (Poupon et al 2013. PubMed ID: 23533021; Wang Z et al 2016. PubMed ID: 26796082; Dröge C et al 2017. PubMed ID:

Molecular Mechanisms Underlying Cholestasis and Lithogenecity Associated with ABCB4

Disease Manifestations Associated with Heterozygous ABCB4 Variants

	LPAC	ICP
Underlying genetic defect in ABCB4	Heterozygous	Heterozygous
Age at presentation	Early adulthood (<40 years)	Pregnancy (2 nd /3 rd trimester)
Clinical presentation	Cholelithiasis, biliary colic	Gestational pruritus
Disease course	Benign	Benign
Complications	Jaundice, cholangitis, biliary pancreatitis, intrahepatic stones	Premature birth, foetal asphyxia, meconium-stained amniotic fluid
Treatment	UDCA, cholecystectomy	UDCA
Differential diagnosis	Primary sclerosing cholangitis, Caroli's disease (congenital dilation of intrahepatic bile ducts)	Acute fatty liver of pregnancy, HELLP syndrome, Budd-Chiari- syndrome

Transporter Variants → Hepatotoxicity

Mutations and polymorphisms in the bile salt export pump and the multidrug resistance protein 3 associated with drug-induced liver injury

Carmen Lang^{a,*}, Yvonne Meier^{a,*}, Bruno Stieger^a, Ulrich Beuers^c, Thomas Lang^d, Reinhold Kerb^d, Gerd A. Kullak-Ublick^{a,b}, Peter J. Meier^a and Christiane Pauli-Magnus^a

Objectives Increasing evidence suggests that a genetically determined functional impairment of the hepatocellular efflux transporters bile salt export pump (BSEP, ABCB11) and multidrug resistance protein 3 (MDR3, ABCB4) play a pathophysiological role in the development of drug-induced liver injury. The aim of this study was therefore to describe the extent of genetic variability in ABCB11 and ABCB4 in patients with drug-induced liver injury and to *in vitro* functionally characterize newly detected ABCB11 mutations and polymorphisms. hepatocellular injury patients and healthy controls, respectively; P < 0.05). The in-vitro transport activity of the V444A and the D676Y BSEP constructs was similar, whereas the G855R mutation was nonfunctional.

Conclusion In summary, our data support a role of *ABCB11* and *ABCB4* mutations and polymorphisms in drug-induced cholestasis. Genotyping of selected patients with acquired cholestasis might help to identify individuals with a genetic predisposition. *Pharmacogenetics and Genomics* 17:47–60 © 2007 Lippincott Williams & Wilkins.

Wide Spectrum of ABCB4 (MDR3) Deficiency

- 20 patients from 12 families were included.
- 5 were homozygotes
- 10 were heterozygotes (one mutation)
- 5 were compoundheterozygotes (two mutations)

Falcao D, et al. Dig I	Liver Dis. 2022	Feb;54(2):221-227.

PatientN°	Family Relationshipto index case	Gender	Age (years)	LPA Csyndrome	Cholecystectomy (years)	ICP(N° of episodes)	DILI
P1	A Index case	F	46	Yes	17	2	res
P2	A Brother	м	49	Yes	44	<u>е</u>	No
P3	A Mother	F	69	No	No	No	No
P4	A Daughter	F	23	No	No	~	No
P5	A Daughter	F	21	No	No	-	No
P6	A Niece	F	23	No	No		No
P7	A Niece	F	17	No	Waiting for surgery	T	No
P8	B Index case	F	38	Yes	23	2	No
P9	<i>B</i> Brother	М	34	Yes	22	-	No
P10	C Index case	F	74	Yes	33	1	No
P11	D Index case	F	35	Yes	23	2	No
P12	E Index case	F	51	No	No	1	No
P13	F Index case	F	57	No	No	×	Yes
P14	G Index case	М	42	No	No	-	No
P15	G Uncle	м	74	No	No	2	No
P16	H Index case	F	65	Yes	40	No	No
P17	I Index case	F	23	Yes	17	No	No
P18	J Index case	м	48	No	No	<u> </u>	No
P19	K Index case	м	62	No	No	A	No
P20	L Index case	F	32	No	29	No	No

Wide Spectrum of ABCB4 (MDR3) Deficiency

19 y.o. M. presented with elevated liver tests (cholestatic pattern) → Negative w/u, was started on Urso and lost to f/u 40 y.o. asymptomatic sister with intrahepatic cholestasis (LPAC)

18 years later presented w decompensation → Homozygous variant in exon 28 of ABCB4 – c.3768_3769delAG

Stättermayer AF et al. J of Hep. 2020 vol 73. 651–663

Wide Spectrum of ABCB4 (MDR3) Deficiency

GASTROENTEROLOGY 2001;120:1448-1458

The Wide Spectrum of Multidrug Resistance 3 Deficiency: From Neonatal Cholestasis to Cirrhosis of Adulthood

EMMANUEL JACQUEMIN,* J. MARLEEN L. DE VREE,* DANIÈLE CRESTEIL,* ETIENNE M. SOKAL,[§] EKKEHARD STURM,^I MICHELINE DUMONT,[¶] GEORGE L. SCHEFFER,[#] MARIANNE PAUL,[†] MARTIN BURDELSKI,^I PITER J. BOSMA,[†] OLIVIER BERNARD,* MICHELLE HADCHOUEL,* and RONALD P. J. OUDE ELFERINK[†]

*Hepatology Unit, Department of Pediatrics, and INSERM U 347, Höpital de Bicètre, Le Kremlin Bicètre, France; *Department of Gastroenterology and Liver Diseases, Academic Medical Center, and *Department of Pathology, Free University, Amsterdam, The Netherlands; *Department of Pediatrics, Université Catholique de Louvain, Cliniques St Luc, Bruxelles, Belgium; IDepartment of Pediatric Gastroenterology and Nutrition, Children's Hospital, University Hospital Eppendorf, Hamburg, Germany; and fINSERM U 481, Höpital

MRCP: Intrahepatic stone

MRCP- Diffuse abnormalities

Certain patient presentations of progressive cholestasis Should Make You Test for PFIC with the Genetic Cholestasis Panel

Idiopathic cholestasis

Consider reassessing your patient if signs of cholestasis manifest without apparent cause^{1,2}

Cholestasis with pruritus or unusual presentation

Consider reassessing if your patient is receiving care for another liver disease but has unusual symptoms, including

- Small duct PSC³
- AMA negative PBC^{4,5}
- MASLD with pruritus^{6*}
- Lean MASLD without metabolic syndrome^{6*}
- Lean MASH with pruritus and without metabolic syndrome^{6*}

Secondary cholestasis triggered by liver issue

Consider reassessing if symptoms of cholestatic pruritus arise in patients who have recently experienced liver issues, including

- All women with history of ICP³
- Drug-induced cholestasis³
- Hormone-induced cholestasis triggered by birth control, menopause, etc^{3,7}

History of complicated gallstones

Consider reassessing if your patient has a complicated history of gallstones, including

- Intrahepatic gallstones³
- Very strong family history of gallstones and incident at a young age^{8,9}
- LPAC leading to stones in the gallbladder or liver¹⁰

1. Vitale G et al. *J Gastroenterol*. 2018;53(8):945-958. **2.** Aamann L et al. *Scand J Gastroenterol*. 2018;53(3):305-311. **3.** Hilscher MB et al. *Mayo Clin Proc*. 2020;95(10):2263-2279. **4.** Chascsa DM et al. *Clin Liver Dis*. 2018;22(3):589-601. **5.** Zen Y et al. In: Burt AD et al, eds. *MacSween's Pathology of the Liver*. 7th ed. 2018:515-593. **6.** Boehlig A et al. *Biomedicines*. 2022;10(2):1-10. **7.** Zu Y et al. *Front Pharmacol*. 2021;12:761255.

8. Sarin SK et al. Hepatology. 1995;22(1):138-141. 9. Hsing AW et al. Int J Cancer. 2007;121(4):832-838. 10. Goubault P et al. J Visc Surg. 2019;156(4):319-328.

Pruritus in patients with PFIC can be debilitating and affect many aspects of life^{1,2}

Even when liver function is satisfactory, the debilitating nature of cholestatic pruritus may necessitate transplant

1. Srivastava A. J Clin Exp Hepatol. 2014;4(1):25-36. **2.** Mehl A et al. World J Transplant. 2016;6(2):278-290

Historic Treatment Options for Pruritus Caused by Cholestatic Liver Diseases

Goals of Treatment^{1,2}

- Provide relief from cholestatic pruritus
- Improve nutritional status and correct vitamin deficiencies
- Manage advanced disease complications to help delay liver transplant

Nutritional support, vitamin and fatty acid supplementation¹

Symptomatic relief of PFIC, including²⁻⁴

Opiate antagonists

• Bile acid sequestrants

- Hydrophilic bile acids
- Antimycobacterials
- Antihistamines

Surgical therapy²

- Biliary diversion
- Liver transplantation

Novel Treatment Strategies – Pharmacologic Interruption of Enterohepatic Circulation

ASBT, apical sodium-dependent bile acid transporter; CYP7A1, cholesterol 7a-hydroxylase; FGF, fibroblast growth factor; FXR, farnesoid X receptor.

1. Keller B, et al. Poster 55 presented at the Falk Symposium 194. Oct 8–9, 2014. Freiburg, Germany;

2. Al-Dury S, et al. Sci Rep. 2018; 8:6658; 3. Hegade VS, et al. Lancet. 2017; 389:1114-23;

4. Mayo MJ, et al. Hepatol Commun. 2019; 3:365–81; 5. Shneider BL, et al. Hepatol Comms. 2018; 2:1184–98.

Change in Scratching Score with Odevixibat: PEDFIC 1 and PEDFIC 2 Trials

Thompson RJ et al. Lancet Gastroenterol Hepatol. 2022;7(9):830-842.

Take Home Messages

- The spectrum of PFIC in adults is wide and <u>should be considered in any</u> <u>cases of unexplained liver disease.</u>
- Have a low threshold to obtain Genetic testing/<u>Cholestasis Panel</u> is available for free to our patients.
- <u>Novel therapeutic agents</u> for cholestatic pruritus are now available and FDA-approved.
- @AlkhouriNaim

Panel Discussion

Moderator: Anita Kohli, MD

Julio Gutierrez, MD

Raj Vuppalanchi, MD

Naim Alkhouri, MD, FAASLD, ABOM

Cholestasis Case Studies

Case Study # 1

HI er	PI: 39 y.o. presented with elevated liver nzymes.	LABS:
PE	: Unremarkable	Total bilirubin
Ρ	MHx: update for pt	ALT
-	2009 dx ICP treated with Urso 300mg bid and delivery early	AST Alk Phos
-	Has continued on Urso since pregnancy with sx of itching and fatigue	GGT Hb
-	2017 had liver bx- mild chronic hepatitis and mild fibrosis. No features	WBC

granulomas. Viral/autoimmune/metabolic liver disease work up negative. MRI/MRCP was negative.

suggestive of PBC or AIH observed. No

Total bilirubin	0.5
ALT	30
AST	18
Alk Phos	156
GGT	141
Hb	12.1
WBC	8.5
Plts	274
Albumin	4.7

Fibroscan: CAP 178 kPa 6.1

Cholestatic Genetic Testing Results

SUMMARY OF RESULTS: Heterozygous for Pathogenic Variants in ABCB4 and SERPINA1; Heterozygous for a Variant of Uncertain Significance in JAG1

Sequence Variant(s):

Gene, Transcript	Mode of Inheritance, Gene OMIM	DNA Variants, Predicted Effects, Zygosity	ClinVar ID	Highest Allele Frequency in a gnomAD Population	In Silico Missense Predictions	Interpretation
<i>ABC</i> 84, NM_000443.3	AD, AR, 171060	c.1768C>T, p.Arg590*, Heterozygous	Not Ested In ClinVar	Not Present	Not Applicable	PATHOGENIC
SERPINA1, NM_000295.4	AR, 107400	c.1095G>A, p.Glu366Lys, Heterozygous	17967	1.8% European (Non-Finnish)	Damaging	PATHOGENIC
JA <i>G1,</i> NM_000214.2	AD, 601920	c.3257T>C, p.Val1086Ala, Heterozygous	Not listed In ClinVar	0.00088% European (Non-Finnish)	Conflicting	UNCERTAIN

Case study # 2

- **HPI:** 34 y.o. F presented with elevated liver enzymes (ALT 33)
- **PE:** Unremarkable

PMHx:

- Liver enyzmes elevated during pregnancy in 2016. Dx ICP. Was delivered 3 weeks early.
- Itching continued x 1 year after pregnancy and then only gets itching when she eats a lot of sugar.

Fibroscan CAP 329, kPa 4.9

LABS:

ALT	25
AST	16
ALK PHOS	62
GGT	172
Total bilirubin	0.6
Albumin	4.9
Hgb	13
WBC	5.4
Plts	304

Viral/ autoimmune/ metabolic liver disease work up negative

RAD: U/S – Normal. S/p cholecystectomy

Cholestatic Genetic Testing Results

SUMMARY OF RESULTS: Indeterminate

Sequence Variant(s):

Gene, Transcript	Mode of Inheritance, Gene OMIM	DNA Variants, Predicted Effects, Zygosity	ClinVar ID	Highest Allele Frequency in a gnomAD Population	In Silico Missense Predictions	Interpretation
MY058, NM_001080467.2	AR, 606540	c.115C>T, p.Gin39*, Heterozygous	Not listed in ClinVar	0.0100% Ashkenazi Jewish	Not Applicable	LIKELY PATHOGENIC
MY058, NM_001080467.2	AR. 606540	c.1392G>T, p.Gh464Hs, Heterozygous	Not isted in ClinVar	0.0029% Latino	Damaging	UNCERTAIN

Mode of Inheritance: Autosomal Dominant=AD, Autosomal Recessive=AR, X-Linked=XL

ClinVer ID: Variant accession (www.ncbl.nim.nih.gov/clinvar)

GnomAD: Allele Frequency registered in a large population database (gnomad.broadinstitute.org). Value listed is the highest allele frequency reported within one of seven population categories recognized in gnomAD v.2.0 (The "Other" population is excluded).

Missense Predictions: Summarized output (Damaging, Conflicting, or Tolerated) via PolyPhen-2, SIFT, MutationTaster, and FATHMM (PMID: 26555599).

PFIC type is determined by genetic changes related to the hepatocellular transport system

There are several types of PFIC, each characterized by proteins with diverse functions¹

- The most common types of PFIC are PFIC 1 (FIC1), PFIC 2 (BSEP), and PFIC 3 (MDR3)¹
 - $_{\circ}~$ PFIC 1 is detected in ~10% to ~38% of patients
 - $_{\circ}~$ PFIC 2 is detected in ~38% to ~91% of patients
- $_{\circ}~$ PFIC 3 is detected in ~28% to ~38% of patients
- Additional PFIC types include PFIC 4 (TJP2), PFIC 5 (FXR), and PFIC 10* (MYO5B)²⁻⁴
- Potential mutations in other genetic loci have also recently been identified^{5,6}

and Jan Stindt (Düsseldorf University Clinic)

1. Baker A et al. *Clin Res Hepatol Gastroenterol.* 2019;43(1):20-36. 2. Bull LN, Thompson RJ. *Clin Liv Dis.* 2018;22(4):657-669. 3. Goldberg A, Mack CL. *Clin Liver Dis (Hoboken).* 2020;15:105-109. 4. OMIM.org. 2023. Accessed January 17, 2023. 5. Maddirevula S et al. *Genet Med.* 2019;21(5):1164-1172. 6. Wu S-H et al. *Hepatology.* 2019;70(6):2221-2224.

Summary of affected proteins and genes in select PFIC types*

PFIC Type	Affected Protein/Gene	Description		
PFIC 1	FIC1 (ATP8B1)	An altered cell membrane structure may impair activity of proteins such as BSEP, possibly leading to the retention of bile acids in the liver ^{1,2}		
PFIC 2	BSEP (<i>ABCB11</i>)	Bile acids accumulate in hepatocytes, leading to hepatocellular damage and cholesterol may crystallize into stones, obstructing small bile ducts and damaging liver structures ¹⁻⁴		
PFIC 3	MDR3 (<i>ABCB4</i>)	Micelle formation is impaired, and excess unsequestered bile acids can damage cholangiocytes, increasing risk of cholesterol stones ^{1,5}		
PFIC 4	TJP2 (<i>TJP2</i>)	Compromised cellular junctions may allow the spillover of bile acids, damaging hepatocytes and cholangiocytes ⁴		
PFIC 5	FXR (<i>NR1H4</i>)	Key transporters encoded by <i>ABCB11</i> and <i>ABCB4</i> are not produced, leading to the intracellular accumula of bile acids ⁶		
PFIC 10	MYO5B (<i>MYO5B</i>)	A possible decreased targeting of BSEP and other proteins to the membrane leads to reduced export and retention of bile acids in hepatocytes ¹		

Numerous causative mutations have also been identified in PFIC genes, for example dozens of mutations in *ATP8B1* in PFIC 1 patients and >200 in *ABCB11* in PFIC 2⁷

1. Bull LN, Thompson RJ. *Clin Liv Dis.* 2018;22(4):657-669. **2.** Vitale G et al. *Dig Liver Dis.* 2019;51(7):922-933. **3.** Goldberg A, Mack CL. *Clin Liver Dis (Hoboken).* 2020;15(3):105-109. **4.** Amirneni S et al. *World J Gastroenterol.* 2020;26(47):7470-7484. **5.** Srivastava A. *J Clin Exp Hepatol.* 2014;4(1):25-36. **6.** Bosma et al. *Int J Mol Sci.* 2021;22(1):1-13. **7.** Henkel SAF et al. *World J Hepatol.* 2019;11(5):412-488.

CME/MOC Form

CME University

- Login or Create a New Account
- Type in 18380 at the top of the page – follow instructions
- Form is in your Folder
- Virtual Attendance link will be sent to you via email

Break & Exhibits

3:40 PM – 3:55 PM

CME/MOC Form

CME University

- Login or Create a New Account
- Type in 18380 at the top of the page – follow instructions
- Form is in your Folder
- Virtual Attendance link will be sent to you via email

UT Southwestern Medical Center

<u>Cirrhosis & Portal HTN</u> Update: From HRS to HCC

Jacqueline G. O'Leary, MD MPH Chief of Hepatology, Dallas VA Medical Center Professor of Medicine, UTSW

Outline

- AKI in Cirrhosis
- Treatment of HRS-AKI
- Preventing Decompensation
 - NSBB
 - Statin therapy
- HCC

International Ascites Club

Subject	Definition					
Baseline sCr	A value of sCr obtained in the previous 3 months, when available, can be used as baseline sCr. In patients with more than one value within the previous 3 months, the value closest to the admission time to the hospital should be used. In patients without a previous sCr value, the sCr on admission should be used as baseline.					
Definition of AKI	 Increase in sCr ≥0.3 mg/dl (≥26.5 µmol/L) within 48 hours; or, A percentage increase sCr ≥50% from baseline which is known, or presumed, to have occurred within the prior 7 days 					
Staging of AKI	 Stage 1: increase in sCr ≥0.3 mg/dl (26.5 µmol/L) or an increase in sCr ≥1.5-fold to 2-fold from baseline Stage 2: increase in sCr >2-fold to 3-fold from baseline Stage 3: increase of sCr >3-fold from baseline or sCr ≥4.0 mg/dl (353.6 µmol/L) with an acute increase ≥0.3 mg/dl (26.5 µmol/L) or initiation of renal replacement therapy 					
Progression of AKI	Progression		Regression			
34	Progression of AKI to a for RRT	higher stage and/or need	Regression of AKI to a lower stage			
Response to treatment	No response	Partial response		Full response		
	No regression of AKI	regression of AKI Regression of AKI stage with a reduction of sCr to ≥0.3 mg/dl (26.5 µmol/L) above the baseline value		Return of sCr to a value within 0.3 mg/ dl (26.5 µmol/L) of the baseline value		

AKI Impacts Survival Regardless of Peak Serum Creatinine

Wong F, et al. Journal of Hepatology 2015

UT Southwestern Medical Center
Prevention of AKI is Critical

Infection prevention is critical

- Secondary SBP prophylaxis
- GI bleeding antibiotic prophylaxis
- D/C PPI in cirrhotic patients when possible
- Only use Foley catheters for approved indications
- Expeditious antibiotic therapy in patients w/ suspected infections.
 - For every hour delay there is an increased risk of death.
- Use of IV albumin
 - SBP
 - Prevent post-paracentesis circulatory dysfunction
 - >5L in all patients
 - All LVPs in ACLF patients
 - AKI...

Kumar A, et al. Crit Care Med 2006. Guevara M, et al. J Hepatology 2012

Risk Factors – Easy to Remove

- Retrospective review of outpatient pharmacy claims -- managed care organization
- Included 12,621 pts with decompensated cirrhosis

Differential Diagnosis

- Post-renal (not this talk)
- Structural Renal Disease (not this talk)
 - Don't forget IgA nephropathy in ETOH liver disease..
- Medication induced:
 - NSAIDS, contrast, some antibiotics
- Functional Renal Disease
 - Pre-renal (low Urine Na, normal UA)
 - Hypovolemia
 - HRS-AKI
 - ATN (high Urine Na, casts on UA)

AKI Etiology & Mortality

 90-day mortality based on etiology of AKI

UTSouthwestern

Medical Center

Patidar KR, et. al. J Hepatology 2023

Etiology, Stage & Response Matter

Survival probability

Etiology of AKI + Prerenal + HRS-AKI + ATN

Patidar KR, et. al. J Hepatology 2023

Medical Center

Garcia-Martinez R, et al. Hepatology 2013

UT Southwestern Medical Center

Diagnosis HRS-AKI

TABLE 11. Diagnosis of HRS-AKI

Diagnosis of HRS-AKI*

Cirrhosis with ascites

Diagnosis of AKI according to International Club of Ascites-Acute Kidney Injury[†] criteria

No response after 2 consecutive days of diuretic withdrawal and plasma volume expansion with albumin infusion (1 g/kg body weight per day)

Absence of shock

No current or recent use of nephrotoxic drugs (NSAIDs, aminoglycosides, or iodinated contrast media)

No signs of structural kidney injury, as indicated by proteinuria (>500 mg per day), microhematuria (>50 red blood cells per high-power field), and/or abnormal renal ultrasonography

Treatment HRS-AKI

- Transplant
- TIPS
- Norepinephrine (MAP ≥10 mmHg) + IV albumin
- Terlipressin +/- Albumin

- Mechanism = vasopressin analog
 - Relatively selective for V1
 - Relative specificity for splanchnic circulation reduces splanchnic vasodilation
 - Reduces portal pressure
 - Increased peripheral vasoconstriction
- Improves renal perfusion

Treatment HRS-AKI

UT Southwestern Medical Center

- REVERSE Trial
- Terlipressin to treat HRS-AKI

- CONFIRM Trail
- Terlipressin to treat HRS-AKI

Table 2. Primary and Four Secondary End Points Included in Multiplicity Adjustment.*					
End Point	Terlipressin	Placebo	P Value		
	number/total number	r of patients (percent)			
Primary end point of verified reversal of HRS \dagger			0.006		
Clinical success	63/199 (32)	17/101 (17)			
Cimical landre	121/100 (01)	01/101 (00)			
Competing event:					
Liver transplantation	10/199 (5)	2/101 (2)			
Death	5/199 (3)	0/101			
Secondary end points included in multiplicity adjustment					
HRS reversal§			<0.001		
Clinical success	78/199 (39)	18/101 (18)			
Clinical failure	105/199 (53)	79/101 (78)			
Competing event:					
Liver transplantation	11/199 (6)	4/101 (4)			
Death	5/199 (3)	0/101			
HRS reversal with no renal-replacement therapy through 30 days			0.001		
Clinical success	68/199 (34)	17/101 (17)			
Clinical failure	116/199 (58)	80/101 (79)			
Competing event:					
Liver transplantation	10/199 (5)	3/101 (3)			
Death	5/199 (3)	0/101			

Wong F, et al. NEJM 2021

CONFIRM Trail

• Terlipressin is contraindicated

- ACLF-3
- Respiratory compromise
- Creatinine >5.0 mg/dL

Table 4. Adverse Events in the Safety Population.*					
Event	Terlipressin (N=200)	Placebo (N = 99)			
	number of patients (percent)				
Adverse events of any grade†	176 (88)	88 (89)			
Respiratory, thoracic, and mediastinal disorders§	33 (16)	8 (8)			
Acute respiratory failure	8 (4)	2 (2)			
Respiratory failure	20 (10)	3 (3)			

Terlipressin vs. Norepinephrine

When terlipressin is contraindicated:

Norepinephrine use – inferior data Requires: central line & ICU monitoring

Singh V, et al. J Hepatology 2012. Ghosh S, et al. Liver International 2013

UTSout

Medical Center

Survival is Based on Response

ITT population stratified by qualifying SCr and alcoholic hepatitis.

Boyer TD, et al. Gastroenterology 2016

UT Southwestern Medical Center

Predictors of Response

- Predictors of response
 - Starting Creatinine
 - Rise in MAP ≥ 5 on day 3
 - Bilirubin <10 mg/dL
- Start Early

UTSouthwestern

Medical Center

Boyer TD, et al. J Hepatology 2011. Nazar A, et al. Hepatology 2010

Guideline Statements

Guidance Statement

- The treatment of choice for HRS-AKI is vasoconstrictor drugs in combination with albumin. The preferred drug is terlipressin, administered either as IV bolus or continuous IV infusion.
- 4. In hospitalized patients with cirrhosis and HRS-AKI without high grade of ACLF or disease, we suggest terlipressin (moderate quality, conditional recommendation) or norepinephrine (low quality, conditional recommendation) to improve renal function.

TIPS HRS-AKI

- TIPS has been studied but has limited application because MELD predicts death.
 - Patients with HRS tend to have high MELD
- TIPS can be considered:
 - After HRS reversal
 - In patients with low bilirubin

AKI Conclusions

• Renal dysfunction terminology has changed.

- Facilitate easier diagnosis
- Earlier treatment
- Small changes (≥0.3 mg/dL) in baseline creatinine affect mortality & long-term renal function.
- Treatment options for HRS-AKI include:
 - Terlipressin + albumin
 - Norepinephrine
- Prevention is the best option.

"I'll have an ounce of prevention."

NSBBs Prevent Decompensation

■201 patents:

- Compensated CTP-A cirrhosis
- Grade 0-1 varices on screening E
- Portal hypertension by HVPG
- Patients were randomized:
 - Propranolol (if >10% decrease)
 - Carvedilol
- Primary endpoint: <u>Risk for</u> <u>decompensation</u>

Villanueva C, et al. Lancet 2019

Which NSBB?

Meta-analysis of 4 trials of carvedilol vs placebo:

- Risk of decompensation sHR = 0.51
- Risk of death sHR = 0.42

Meta-analysis of 6 trials of carvedilol vs. other NBB

Analysis 1.15. Comparison 1 Carvedilol versus non-selective beta-blockers, Outcome 15 Reduction in hepatic venous pressure gradient (%) (overall).

Study or subgroup	Ca	Carvedilol		ditional, a-blocker	Mean Difference	Weight	Mean Difference	
	N	Mean(SD)	N	Mean(SD)	Random, 95% Cl		Random, 95% CI	
Bañares 2002	24	-19.2 (9.8)	22	-12 (9.4)		39.12%	-7.2[-12.74,-1.66]	
De 2002	17	-28.2 (29.1)	16	-23.3 (20.2)	· · · · · · · · · · · · · · · · · · ·	4,16%	-4.9[-21.91,12.11]	
Gupta 2016	29	-27.1 (15.2)	28	-22.4 (13.4)		21.77%	-4.7[-12.13,2.73]	
Hobolth 2012	14	-19.3 (16.1)	12	-12.5 (16.7)		7.5%	-6.8[-19.47,5.87]	
Kim 2016	55	-20.3 (21.6)	55	-11.1 (28.5)		13.46%	-9.2[-18.65,0.25]	
Mo 2014	48	•28.3 (22.2)	48	-12.4 (24.1)	•	14%	-15.92[-25.19,-6.65]	
Total ***	187		181		•	100%	-8.02[-11.49,-4.55]	
Heterogeneity: Tau ² =0; Chi ² =	3.87, df=5(P=0.5	7); ² =0%						
Test for overall effect: Z=4.53	(P<0.0001)				6 N 1 1 1			
	HARLER, CARON		Favo	urs carvedilol	-20 -10 0 10 20	Favours bet	a-blocker	

Carvedilol is preferred in compensated cirrhosis.

Villanueva C, et al. J Hep 2022

Zacharias AP, et al. Cochrane Database of Systematic Reviews 2018

What Else Lowers Portal Pressures?

Simvastatin lowers portal pressure

Additive to NSBB

Compensated & decompensated patients

Abraldes JG, et. al. Gastroenterology 2009

Statin Use I Risk of Decomp

Meta-analysis shows reduced risk of decompensation:

Statin Exposure and Risk of Decompensation of Cirrhosis

Study name

Moh	anty 2015 - HCV
Kun	nar 2014 - Mixed
Hua	ng 2016 - HBV
Cha	ng 2017 - HBV
Cha	ng 2017 - HCV
Cha	ng 2017 - EtOH

Risk ratio	Lower limit	Upper limit	p-Value
0.55	0.39	0.78	0.00
0.58	0.34	0.98	0.04
0.53	0.43	0.66	0.00
0.39	0.25	0.61	0.00
0.51	0.28	0.91	0.02
0.69	0.45	1.06	0.09
0.54	0.46	0.62	0.00

Risk ratio and 95% CI

Kim RG, et al. Clinical Gastro & Hep 2017

Meta-analysis shows reduced risk of mortality: Statin Exposure and Risk of All-Cause Mortality

Study name

Abraldes 2016 - Mixed Mohanty 2015 - HCV Kumar 2014 - Mixed Hsiang 2015 - HBV Bang 2016 - EtOH Chang 2017 - HBV Chang 2017 - HCV Chang 2017 - EtOH

■HR = 0.24 for PVT

■2785 pts – matched

Risk ratio and 95% CI

De Franchis R, et al. J of Hepatology 2021 Amjad M, Clinical Gastro & Hep 2024 ePub

Statin Use & Risk for HCC

Meta-analysis of lipophilic statins shows reduced risk of HCC:

	No. of studies	Sample size	HR	95% confidence interval	p value	l ² (%)	p value for Cochran Q test of heterogeneity	Subgroup difference
Statins								
Overall	10	1,774,476	0.52	0.37-0.72	<0.01*	97.80	<0.01	
Cirrhosis	3	21,584	0.95	0.91-0.99	0.04*	90.20	<0.01	
Hepatitis B	5	152,716	0.53	0.32-0.88	0.01 [*]	96.70	<0.01	
Hepatitis C	3	16,058	0.79	0.64-0.99	0.04 <mark>*</mark>	81.70	<0.01	
NAFLD	2	242,751	0.68	0.59-0.77	<0.01*	90.80	<0.01	
Accounted for competing risk of death without HCC	5	980,486	0.51	0.32-0.81	<0.01 [*]	97.50	<0.01	
Statin type								
Lipophilic	3	1,083,952	0.46	0.37-0.57	<0.01	64.00	0.06	0.93
Hydrophilic	3	1,083,952	0.48	0.18-1.27	0.14	99.10	<0.01	
Accounted for concurrent use of aspir	in, NSAID	s and metform	nin					
Yes	9	1,534,926	0.52	0.37-0.75	<0.01*	98.10	<0.01	

Zeng RW, et al. Alimentary Pharmacology & Therapeutics 2023

Received: 1 May 2023 Accepted: 1 May 2023

DOI: 10.1097/HEP.000000000000466

PRACTICE GUIDANCE

AASLD Practice Guidance on prevention, diagnosis, and treatment of hepatocellular carcinoma

Amit G. Singal¹ | Josep M. Llovet^{2,3,4} | Mark Yarchoan⁵ | Neil Mehta⁶ | Julie K. Heimbach⁷ | Laura A. Dawson⁸ | Janice H. Jou⁹ | Laura M. Kulik¹⁰ | Vatche G. Agopian¹¹ | Jorge A. Marrero¹² | Mishal Mendiratta-Lala¹³ | Daniel B. Brown¹⁴ | William S. Rilling¹⁵ | Lipika Goyal¹⁶ | Alice C. Wei¹⁷ | Tamar H. Taddei^{18,19}

HCC Screening

• US + AFP

• Who to screen?

Population group	Incidence of HCC
Sufficient risk to warrant surveillance	
Child-Pugh A–B cirrhosis, any etiology Hepatitis B Hepatitis C (viremic or post-SVR) Alcohol associated cirrhosis Nonalcoholic steatohepatitis Other etiologies	≥1.0% per year
Child-Pugh C cirrhosis, transplant candidate	
Non-cirrhotic chronic hepatitis B Man from endemic country ^a age > 40 y Woman from endemic country ^a age > 50 y Person from Africa at earlier age ^b Family history of HCC PAGE-B score $\geq 10^{\circ}$	≥0.2% per year

Insufficient risk and in need of risk stratification models/biomarkers

Hepatitis C and stage 3 fibrosis

< 0.2% per year

Noncirrhotic NAFLD

Screening improves survival

Author, year			¥	Haza	rd ratio (95% Cl)
Chaiteerakij 2017			<u> </u>		0.57 (0.43-0.76)
Choi 2019					0.75 (0.69-0.82)
Costentin 2018	_				0.46 (0.24-0.86)
Debes 2017					0.62 (0.48-0.78)
Kwon 2020					0.76 (0.71-0.82)
Mittal 2016					0.92 (0.79-1.07)
Pinero 2019		\	+		0.51 (0.38-0.69)
Singal 2017					0.59 (0.37-0.93)
Thein 2015					0.76 (0.64-0.91)
Toyoda 2018		-\$	_		0.60 (0.55-0.66)
Van Meer 2015			-		0.51 (0.39-0.67)
Wu 2016			*		0.66 (0.64-0.68)
Pooled overall survival I ² = 78.1%			\Diamond		0.67 (0.61-0.72)
	0.2	0.4	0.8	1.0	
	-	- Favors screenin	p		

UT Southwestern Medical Center

Surgical Resection for HCC

Algorithm for surgical treatment of early stage HCC

Adjuvant Therapy for HCC

- High risk features:
 - Size >5cm
 - ->3 lesions
 - Poor tumor differentiation
 - Macro- or microvascular tumor invasion

Metastatic HCC Treatment Options

UT Southwestern Medical Center

HCC Conclusions

- HCC screening improves survival.
 - US (LIRADS) + AFP is recommended
 - CTP-C patients who are NOT transplant candidates do not benefit
- Resection remains the best option for HCC
- Adjuvant immunotherapy is now recommended in patients with high-risk features after resection or ablation
- Systemic options for HCC therapy have improved dramatically.

Conclusions

- Prevent AKI
- Terlipressin treats HRS-AKI
- NSBB:
 - Carvedilol decreases the risk for decompensation
 - Carvedilol is the NSBB of choice

• Statins:

- Lower portal pressures
- Decrease risk for decompensation
- Lower HCC risk
- May prevent PVT
- Lower all cause mortality

2024 DESERT LIVER CONFERENCE PHOENIX, ARIZONA

The "Big Three" of Genetic Liver Diseases: Hemochromatosis Alpha 1 Antitrypsin Disease Wilson Disease

Richard A. Manch MD, FAASLD, FACP, FACG

Director of Hepatology Arizona Liver Health Clinical Professor of Medicine University of Arizona
The Big Three of Genetic Liver Diseases

- All genetic based disorders
- All etiologically related to single point gene mutations
- Several pathogeneses now explained by abnormal or absent function of mutated gene product
- Unpredictable genotype-phenotype correlations
- Included in work-up of unexplained liver disease

Prevalence

 Hemochromatosis
 1:300 – 500

 Wilson Disease
 1:30,000

 A1AD
 1:3000-5000

MASLD MASH HCV 1:3 – 1:4 1:20-1:50 1:100

The Big Three of Genetic Liver Diseases

Hemochromatosis Wilson Disease Alpha 1-antitrypsin deficiency

Iron Overload States: Classification

- 1. Hereditary hemochromatosis (HH)
- 2. Acquired hemochromatosis (Secondary iron overload)
- 3. Miscellaneous iron overload states

Normal Iron Balance

Ingested 10-20 mg/day

Absorbed 1-2 mg/day

Lost Gut, skin, urine - 1-2 mg/day

Andrews NC, N Engl J Med 1999; 341:1986

Iron Overload and the Liver

Hereditary Hemochromatosis

Type 1:HFE associated (90% of total HH) Type 2:Juvenile hemochromatosis – Hemojuvelin (HJV) (Type 2A) – Hepcidin (HAMP) (Type 2B) Type 3:TfR2 mutation Type 4: Ferroportin mutation (autosomal dominant)

Iron Metabolism: Normal

Hereditary Hemochromatosis (HH) Pathogenetic Mechanisms

- Genetic factors
 - Autosomal recessive, gene frequency 5%
 - Gene location, chromosome 6
 - HFE mutation homozygous C282Y leading to underexpression of hepcidin (the inhibitory protein for iron transport) synthesized in the liver
- Pathophysiology
 - Inappropriate intestinal iron absorption
 - 2-4 mg/day net accumulation 1000 mg/yr
- Iron toxicity
 - Parenchymal iron toxic
 - Correlation between iron and fibrosis

Hereditary Hemochromatosis

- Four stages of disorder
 - Genetic predisposition without iron overload
 - Early iron overload (2-5g, up to 20 yrs)
 - Moderate iron overload (5-10g, 20-40 yrs)
 - Heavy iron overload (>10g, >40 yrs)

Disease

But now it is recognized only 10-15% of genetic C282Y homozygotes develop clinical disease

HFE Gene Mutations

Lead to deficient liver hepcidin production & failure of intestinal ferroportin inactivation

Increased intestinal iron absorption

Iron-induced tissue injury and fibrogenesis

Hereditary Hemochromatosis

Hypogonadism Arthropathy Cardiac failure

HOW IS IRON OVERLOAD IDENTIFIED?

- Clinical
- Blood testing
 - Transferrin saturation
 - Ferritin levels
 - Association with HFE mutation
- Phlebotomy requirements
- Liver biopsy
- Non-invasive imaging – MRI

Hemochromatosis

Hepatocytes showing iron overload, stained blue color in perl's prussian blue stain. Note **the inflammation characteristically absent**.

Hemochromatosis - Management Objectives

- Early diagnosis to prevent organ damage
- Early detection to promote longevity
 - In first degree relatives of probands
 - In higher risk general population
 - Males may present earlier than females
- Optimal treatment of probands and detected cases
 - Rapid and safe iron removal to reach ferritin of 50 µg/L
- Appropriate follow-up and maintenance treatment
 - Monitor for cirrhosis and HCC

The Big Three of Genetic Liver Diseases

Hemochromatosis Wilson Disease Alpha 1-antitrypsin deficiency

BRAIN.

PART IV., VOL. 34.

Original Articles and Clinical Cases.

PROGRESSIVE LENTICULAR DEGENERATION: A FAMILIAL NERVOUS DISEASE ASSOCIATED WITH CIRRHOSIS OF THE LIVER.¹

BY S. A. KINNIER WILSON, M.D., B.Sc.EDIN., M.R.C.P.LOND. Registrar to the National Hospital, Queen Square, London.

(From the Laboratory of the National Hospital, Queen Square.)

[MARCH, 1912.]

DR. KINNIER WILSON

Human Copper Metabolism

- = Hepatolenticular degeneration
- Pathogenesis
 - Genetic
 - Mutant regulator gene
 - Ceruloplasmin degradation increased
 - Biliary copper excretion reduced
 - Hepatic copper metabolism
 - Defective vesicular trafficking
 - Tissue toxicity of copper – Liver, brain, kidney, RBCs

Genetics of Wilson Disease

- Autosomal recessive
- Carrier rate ~ 1:90
- Prevalence of disease ≥ 1:30,000
- Defect on chromosome 13

Initial Clinical Presentation	
– Hepatic	42%
– Neurologic	34%
– Psychiatric	10%
 Hematologic & miscellaneous 	13%
– Renal & metabolic	1%

Note: In 25% more than one organ system is involved.

- Hepatic disease (6 35+ years)
 - Acute hepatitis with resolution
 - Fulminant hepatitis with rapid progression
 - Chronic active hepatitis
 - Cirrhosis without previous hepatic manifestations

- Hepatic pathology
 - Steatosis
 - Necroinflammation
 - Portal & lobular fibrosis
 - Mallory bodies
 - Micro-macronodular cirrhosis

Fatty change, mild to moderate hepatocytic necrosis, with inflammatory infiltrate, intranuclear glycogen inclusions also seen.

Wilson Disease

The upper nodule is strongly positive for copper, stained orange-red. The lower nodule is completely negative. (Wedge biopsy, Rhodanine Stain)

- Neurologic disease (12- 40 yrs)
 - (Associated cirrhosis & K.F. rings)
 - Tremor and ataxia
 - Choreiform movements
 - Dysarthria, dystonia
 - Slow movements
 - Behavioral problems
 - Rigidity and drooling

- Miscellaneous abnormalities
 - Hemolytic anemia (Coombs negative)
 - Renal tubular dysfunction
 - Aminoaciduria
 - Glucosuria
 - Uricosuria
 - Defective bicarbonate reabsorption
 - Hyperphosphaturia
 - Hypercalciuria (nephrocalcinosis)
 - Bone and joint disease
 - Osteomalacia
 - Osteochondritis dissecans
 - Chondrocalcinosis

Ophthalmologic manifestations

Kayser-Fleischer rings

- Sunflower cataracts

Representative copper measurements

	Normal	W.D.
Plasma ceruloplasmin (mg/dL)	20-40	< 20
Urine copper (μg/24 hr)	< 40	100-1000
Liver copper (µg/g dry weight)	15-55	250-3000

- Management (lifelong)
 - D-penicillamine 500 mg t.i.d.
 - (Reduced to 375 mg b.i.d.)+pyridoxine
 - Trien (triethylene tetramine,trientene) in intolerant patient
 - Reduced doses in pregnancy, surgery
 - Zinc (150 mg daily) as maintenance
 - Avoid high copper foods (shellfish, nuts, mushrooms, chocolate & liver)

Wilson Disease Indications for Hepatic Transplantation

Features of fulminant hepatitis

 Initial presentation or following discontinuation of D-penicillamine

Decompensated cirrhosis

 Despite adequate chelation and supportive measures

The Big Three of Genetic Liver Diseases

Hemochromatosis Wilson Disease Alpha 1-antitrypsin deficiency

Alpha-1 Antitrypsin Deficiency

Skin - Necrotising Panniculitis Systemic Vasculitis - Psorasis - Urticaria -angioedma Liver: **Cirrhosis** Neonatal Hepatitis Hepatoceilular Carcinoma Kidneys. - Proliferative Glomerulonephritis - IgA Nephropathy Intestines Inflammatory.

Bowel Disease

-Lungs - Chronic Obstructive Pulmonary Disease (Panacinar Emphysema) - Bronchiectasis - Asthma

Vascular - ANCA-positive Vasculitis - Abdominal and Intracranial aneurysms - Arterial fibromuscular Dysplasia

Pathophysiology of α1-AT deficiency

- α1-AT is a serine protease inhibitor (serpin) whose role is to inactivate neutrophil elastase (and others) to maintain protease-antiprotease balance
- Produced in endoplasmic reticulum of the liver, and subsequently undergoes foldings and insertions of carbohydrate side chains.
- Defect is deficient secretion from liver to circulation
- Diffuses from circulation to lung, but insufficient available to protect lung from neutrophil elastases

Alpha 1-AT: Pi types

Pi type	Plasma α 1-AT level	(nl 200-300 mg/dL)
	Percent	Prevalence (%)
PiMM	100	80-95
PiMZ	57.5	0.5-0.7
PiSS	60	0.1-1.6
PiSZ	37.5	0.1-0.2
PiMnull	50	v.rare
PiZZ	15	0.1-0.6
PiNull-Null	0	v.rare
Clinical manifestations

- Lung
 - Emphysema and bronchiectasis
- Liver
 - Chronic hepatitis, cirrhosis, HCC
- Skin
 - panniculitis
- Vasculitis
 - ANCA positive disease such as Wegener's granulomatosis
- Most common causes of death
 - Respiratory failure (50-72%)
 - Complications of cirrhosis (10-13%)

Alpha 1-antitrypsin Deficiency

Hepatic manifestations

Neonatal hepatitis

In only 15% of PiZZ homozygotes

Childhood cirrhosis

50% give no history of neonatal hepatitis

Adult cirrhosis

rare *de novo* presentation of PiZZ phenotype

Hepatocellular carcinoma

Odds ratio increased by PiZ allele

Alpha 1-Antitrypsin Deficiency

Diagnostic evaluation

Low α-1 AT concentration or trypsin inhibitory activity -misleading due to acute phase response **Pi** genotype defines specific phenotype -PiZZ, PiMZ etc. Liver biopsy (also defines stage) -PAS-diastase positive inclusions -immunoperoxidase -electron microscopy

α1-Antitrypsin deficiency

Hepatocytes near periportal region contain mutated proteins, and stained magenta color for PAS+diastase. May also show steatosis, necrosis and fibrosis.

Pathophysiology

- Mechanism of liver disease
 - Loop sheet polymers of α 1-AT in the ER of the hepatocyte cannot complete the secretory pathway
 - Liver disease depends on balance of synthesis, intracellular degradation, and cellular export. Degradation separates those ZZ who develop liver disease from those who are spared
 - S allele inherited with M or with S has some retention, but less polymerization, and does not cause liver disease
 - SZ can cause liver disease

Diagnosis

- Concentration of α-1AT in serum
 - but α-1AT is an acute phase reactant and may be spuriously elevated
- Therefore phenotype/genotype
 - Phenotype will not identify Pi Null
 - Genotype identifies Pi S and Pi Z
 - Genotype will miss rare alleles

Diagnosis – Who to test?

- COPD or asthma with irreversible airflow obstruction
 - Especially early onset (<45 yrs), or with strong family history of COPD
- Unexplained liver disease (any age)
- Necrotizing panniculitis
- c-ANCA positive vasculitis

Treatment – Liver Disease

- Treat all complications of cirrhosis
- Replacement therapy with α-1AT concentrate will not benefit liver disease but may protect lung elastic tissue
- Liver transplant corrects metabolic disorder
 - Recipients acquire donor phenotype
 - Unknown outcomes regarding onset or progression of lung disease
 - Excellent outcomes for liver, similar to that of other indications for OLT

Thank you!

Richard A. Manch MD, FAASLD, FACP, FACG

Director of Hepatology Arizona Liver Health Clinical Professor of Medicine University of Arizona

Panel Discussion

Moderator: Jacqueline O'Leary, MD MPH

Richard Manch, MD, FAASLD, FACP, FACG

Naim Alkhouri, MD, FAASLD, ABOM

Attendee Meeting Survey

Sponsor Meeting Survey

CME/MOC Form

CME University

- Login or Create a New Account
- Type in 18380 at the top of the page – follow instructions
- Form is in your Folder
- Virtual Attendance link will be sent to you via email

Closing Remarks

Sign up for Early Bird Registration for 2025 at www.desertliver.com

CME/MOC Form

CME University

- Login or Create a New Account
- Type in 18380 at the top of the page – follow instructions
- Form is in your Folder
- Virtual Attendance link will be sent to you via email

